Knowledge Hub


Prototype Tooling

What is Prototype Tooling?

Prototype tooling refers to the creation of moulds or tools used for manufacturing prototypes.

These moulds or tools are usually made from materials such as aluminium and are used to produce parts or components that closely resemble the final product.

Prototype tooling enables product designers to test and validate their designs before committing to full scale production.

This process will identify any design flaws so that improvements can be suggested before any sizeable investment is made. This ensures an efficient and cost-effective manufacturing process.

Plastic Prototype with Aluminium Tool

How Does Prototype Tooling Differ from Production Tooling?

Prototype tooling and production tooling differ in terms of their purpose, design, and manufacturing methods. The main differences are outlined below:

Purpose: Whereas prototype tooling is used to create a limited number of prototypes or sample parts, production tooling is designed for large-scale manufacturing processes, producing high volumes of finished products to meet the demands of the marketplace.

Design complexity: Prototype tooling is suited to less complex designs which can be produced quickly and more easily. It is more focused on product concept rather than long-term durability. Production tooling, however, is usually characterised by high volumes, strict quality control, and longer tool life.

Manufacturing method: Prototype tooling often utilises less expensive manufacturing methods, such as 3D printing or CNC machining, to produce small quantities of parts for testing and evaluation. Production tooling, on the other hand, generally involves more expensive manufacturing processes, such as injection moulding or die casting.

Material selection: Prototype tooling allows for greater flexibility in material selection. It can accommodate a wide range of materials, including lower-cost options like 3D printing resins or soft tooling materials. Production tooling, however, requires the use of materials that meet durability and quality requirements for mass production, often leading to higher costs.

Prototype Injection Moulded Component

Lead time: Prototype tooling’s short lead times make it ideal for rapid product development. Production tooling, by contrast, involves longer lead times due to complex design and manufacturing processes, and it also may require more extensive quality control.

Cost: Prototype tooling is generally less expensive compared to production tooling because it produces a limited number of prototypes. Production tooling requires substantial investment, as it needs to withstand repeated use, and maintain product quality.

Some of the Main Features of Prototype Tooling

Some of the main features of prototype tooling include:

Customisation: Prototype tooling enables customisation and modification of designs during the product development stage. This flexibility allows companies to refine their design and improve product functionality.

Iterative development: Prototype tooling allows for early troubleshooting and adjustment to ensure a successful final product. This iterative process helps in identifying and resolving design issues early on, saving time and costs in the long run.

Scalability: While prototype tooling is primarily used for small-scale production, it also provides insights into the scalability of a design. Understanding how a product can be scaled up for mass production is crucial in ensuring a smooth transition to full-scale manufacturing.

Reduced lead time: By using prototype tooling, companies can significantly reduce the lead time required for product development. This allows for quicker market entry, giving businesses a competitive advantage.

Tool longevity: Prototype tooling typically has a shorter lifespan compared to production tooling. However, with advancements in materials and manufacturing processes, prototype tooling is now capable of producing multiple prototypes before replacements are needed.

Feedback generation: Prototype tooling allows product designers to gather insights and make necessary improvements before moving to mass production. This feedback loop helps in refining the product and ensuring its market fit.

Prototype Parts

What Industries Adopt Prototype Tooling?

Various industries make use of prototype tooling, including:

Automotive: Prototype tooling is extensively used in the automotive industry to create prototypes of car parts, such as engine components, body panels, and interior components.

Aerospace: Prototype tooling is vital in the aerospace industry to develop prototypes of aircraft components, including structural parts, engine components, and interior fittings.

Consumer Electronics: Prototype tooling is commonly employed in the consumer electronics industry to create prototypes of smartphone casings, tablet components, computer parts, and other electronic devices.

Medical and Healthcare: Prototype tooling is crucial in the medical and healthcare industry to develop prototypes of medical devices, such as prosthetics, implants, instruments, and equipment. This allows for design optimisation, testing, and regulatory approval.

Industrial Equipment: Prototype tooling finds application in the manufacture of various industrial equipment, including machinery components, heavy-duty tools, and industrial machinery prototypes. This aids in minimising defects and improving efficiency.

Packaging: Prototype tooling is used in the packaging industry to create prototypes of packaging containers, bottles, caps, closures, and other packaging solutions. These prototypes help to assess functionality, aesthetics, and production feasibility.

Furniture and Interior Design: Prototype tooling plays a role in the furniture and interior design industry by producing prototypes of furniture pieces, lighting fixtures, decorative elements, and other interior products. This allows designers to visualise and evaluate the physical appearance, ergonomics, and user experience of the products.

Sporting Goods: Prototype tooling is utilised in the production of sporting goods such as athletic shoes, equipment, and apparel.

Prototype Plastic Car Panels

Further Reading

If you found this article interesting, you may also want to read our associated articles on Bridge Tooling and the New Product Development Process.

Alternatively, if you’re a Product Designer or a Product Engineer and you’re looking to get a prototype project off the ground, please get in touch with us by visiting our Contact page.

action image
We can put your plans into action today

Award-winning aluminium tooling, plastic injection moulding, CNC machining, and rapid prototyping. We specialise in fast turnarounds of high quality components.

Want to know more? Get a quote