Knowledge Hub

Things to Look for in an Injection Moulding Partner

Introduction

For newcomers to injection moulding, the process can appear quite daunting and unfamiliar. There are so many things to consider, so many choices to make, and so many potential pitfalls along the way.

For start-up companies, or sole traders with big ideas, this can be especially scary. Particularly if they’re working on a shoestring budget where every penny counts.

That’s why it’s so important to make effective decisions.

Perhaps the most important of all these decisions is choosing a manufacturing partner to support you through the production process.

We’ve put together a list of key factors to consider when making your decision.

We hope that this will serve as a useful guide, particularly to those individuals and companies out there who are embarking on the injection moulding process for the first time.

What to Look for in an Injection Moulding Partner

In-house Toolmaking and Injection Moulding

Sourcing an injection moulding partner who has their own in-house toolmaking and injection moulding is crucial.

In-house tooling and moulding capabilities allow manufacturers to ensure quality control of all tooling and parts that are produced. Since the quality of the finished components will be inextricably linked to the quality of the tooling, it is essential that both manufacturing tasks are carried out in-house, so that the process can be closely monitored from start to finish.

This will allow for greater efficiencies and economies of scale, meaning that better quality products can be delivered within shorter production cycles.

By choosing a manufacturer who has tooling and moulding capabilities all under one roof, it will also save customers the time and hassle of sourcing multiple production partners.

Quality Control

Injection moulded components often need to be produced to very tight tolerances. This requires absolute precision in the manufacture of both the tool and the plastic components.

Injection moulders must have stringent quality control measures in place. They should also have their own Quality Engineering department, who are involved in each project from conception right through to completion. This will ensure that any anomalies are detected as soon as possible, so that suitable resolutions can be identified and implemented.

Failure to adhere to rigid quality control checks could result in the production of defective final parts, as well as delays in bringing these end products to market. This will have negative commercial implications for the customer, including the incurrence of additional costs.

Certifications

Linked to Quality Control, it is worth ensuring that your injection moulding partner is fully accredited and has been audited by the relevant accreditation bodies on a termly basis. It is important to ensure that they are actively committed to maintaining these accreditations, and that they continue to participate in regular assessments by their accreditors.

ISO accreditations are the accepted standard of practice in the injection moulding industry.

Range of Services

Choose a manufacturing partner with a complete range of services, such as prototyping, part design, and mould flow analysis. Such companies are usually the most credible, reliable partners within the industry since they offer a comprehensive one-stop solution to all your manufacturing needs.

Injection moulding partners who supply sister services, such as toolmaking and CNC machining, are particularly useful. Not only do they reduce the need for multiple suppliers, but they also have a depth of knowledge in-house which can be vital during the completion of complex manufacturing projects, where a varied level of expertise may be required.

In the long run, this can prove to be more cost effective and can reduce production times.

Capabilities and Technologies

It is important before you embark on a project with a new supplier to ask about their production capabilities. You need to ensure that they have the capacity required to fulfil your order within whatever timeframe you require it.

It is important to ensure that the manufacturer has enough machinery, technology, and in-house expertise to deliver the project on spec and to the anticipated level of quality.

A company that invests in both its technologies and the professional development of its people is usually one that stays ahead of the curve.

Don’t be afraid to ask questions such as how many injection moulding machines do you have? Or how much experience do your toolmakers have? Or what quality tests can you offer to test the accuracy of a component? Or how big is your production facility?

These questions will help you to understand the type of manufacturer you are dealing with.

Plastics Knowledge and Understanding

Material selection is a key consideration during the injection moulding process. Working with experienced injection moulders and plastic polymer experts will help you to identify the correct grade of material for the end application.

Failure to select the correct material can result in a sub-standard final component.

Experienced injection moulding technicians and engineers can help to reduce costs by getting things right first time during the production process. This can significantly reduce the amount of plastic waste produced, thus making the process more environmentally friendly.

Industry Experience

Look for an injection moulding partner who understands your industry.

Although this is not essential, it can be beneficial to find a manufacturer with specific industry-related experience, as they will better understand the particular challenges of your marketplace.

In markets where there is a high degree of regulation – for instance, the aerospace sector – this is particularly important. If safety is a key requirement for the final application, industry expertise will help to ensure that the final parts are as robust and reliable as they can be.

Lifetime Guarantee

Find out how long the moulds are guaranteed for. A key question to ask is, does the manufacturer guarantee the moulds for the full life cycle of the project?

Manufacturers should be willing to give you a guarantee of how long they anticipate the mould lasting. They should be able to do this from the start. If minor adjustments are needed for the tooling in order to honour this guarantee over the lifetime of the tool, these should be completed by the manufacturer at no additional expense to the customer.

Effective Customer Service

Note that we are using the term ‘manufacturing partner’ in this article. This implies a company who will not only deliver high quality components, but one which will also be a source of best practice advice throughout the process. In short, a company with whom its customers can build long-standing mutually beneficial relationships based on shared trust.

This is especially important when tackling projects that are highly confidential and involve intellectual property or patent-protected designs. In such instances, professional manufacturing partners will be happy to sign confidentiality documents or non-disclosure agreements, which will help to protect the IP of the products under discussion.

Manufacturing partners who are always available to you and generous with their time are especially attractive.

Price

Price is a key factor for all businesses. Procuring goods and services for less will always hold significant sway with buyers.

However, choosing an injection moulding partner on a price-only basis can be a dangerous strategy. There must be a compromise between price and quality.

Other factors which are important include reliability, trustworthiness, transparency, and an ability to honour deadlines.

What Their Customers Say

There is a great deal of value in taking some time to read reviews about injection moulding companies by their existing customers before you enter into any agreement with them.

Also take the time to read customer testimonials on their website if they have them. You may even choose to speak to some of their customers in confidence about their experiences.

It is also worth investigating to see if they have won any industry awards. Recognition from within the supply chain from peers and competitors is always hard to argue with.

This type of research can help you to make a more informed and reliable decision.

Summary

There are many different factors to consider when sourcing an injection moulding partner.

The most important thing to remember is not to be afraid to ask questions. Find out as much as you can about a supplier; work hard to understand their capabilities, their expertise, their quality control processes, and the full extent of the services which they offer.

You can even seek independent advice from their existing customers if you think it would be a worthwhile exercise.

Asking questions will ensure that the manufacturer knows that they will have to work hard to keep your custom.

It will also help you to learn about the overall injection moulding process, and it will provide you with an opportunity through sustained dialogue to build a strong relationship, which will potentially be beneficial to both parties over time.

Looking for a new Injection Moulding Partner?

If you’re looking for an injection moulding partner but don’t know who to choose or how to go about it, we’d be happy to hear from you.

Even if you just want an informal chat about the process, or if you’d like to ask our advice on injection moulding or toolmaking, we’d be very happy to hear from you.

Please either call us on +44 (0) 121 550 5868, or email info@rptechnologies.co.uk.

Knowledge Hub

Reshoring

What is Reshoring?

Reshoring is the process of returning product manufacturing back to its country of origin. It essentially involves bringing production activities back from overseas to wherever the company who owns the products is based.

In recent times, the UK manufacturing industry has seen a significant increase in the number of domestic companies who have brought production of their goods back to the UK.

Overseas manufacturing outlets have become a less attractive option in recent years due to several reasons.

Let’s explore some of the external forces that have put pressure on overseas manufacturers….

Key Reasons for Abandoning Overseas Manufacturers

Longer lead times – Some overseas manufacturers have traditionally operated on very short lead times, particularly those in Asian markets. This has made them very attractive to UK customers who need parts fast. However, in recent times, changes in the global political landscape have stifled international supply chains resulting in less timely – and in some cases, unreliable – means of delivering products to other parts of the world.

Price – supply chain pressures and economic volatility has meant that some overseas manufacturers are no longer as competitive. Some UK-based customers have seen their costs of doing business with Chinese manufacturers go up by over 25%.

Ukraine war – the political turmoil in Eastern Europe has led to supply chain disruptions, export challenges, rising costs, and uncertainty in global financial markets.

Energy crisis – rising costs have meant that Chinese manufacturers have had to increase their prices, the burden of which has been absorbed by the customer.

COVID-19 – delays and shortages related to the pandemic have prompted many customers to re-evaluate their reliance on China, and to look elsewhere for an alternative solution.

Geopolitical factors – China has found itself on the opposing side of the table during the current Russia/Ukraine situation, which has left it at odds with many European customers.

Environmental issues – British companies are under increasing pressure to ensure compliance with environmental and corporate social responsibility best practice. Countries with poor human rights records, or those who do not protect workers’ rights, are rapidly becoming less attractive partners.

Why UK Companies are Moving Their Manufacturing Back Home

  • Greater certainty around delivery times
  • Less potential for supply chain disruptions
  • Easy, more flexible collaboration with domestic suppliers
  • The language barrier is eliminated, and communication is more open
  • Reduced supply chain complexity
  • Greater confidence in the quality of the final components
  • Cost advantages of overseas production are now less favourable (in China, for example, unit labour costs have risen sharply in the last few years)
  • Reduced shipping costs – the price of shipping goods from Asia, South America, and mainland Europe has increased dramatically, with serious implications for UK SMEs.

Some studies suggest that up to 40% of small businesses are considering a switch from overseas manufacturers to UK manufacturers, so that they can remove import challenges post-Brexit and reduce rapidly rising freight costs. These costs, coupled with increased legislation and bureaucracy, have made overseas manufacturing a financial and logistical headache for many UK businesses, eroding profit margins and stifling growth.

Manufacturing in the UK

The UK is known across the world as a manufacturing power. We have a rich history of making products and exporting them to the rest of the world. We are skilled in innovation, with advanced technologies and infrastructure to support manufacturing of all kinds.

Despite changes in the recent socio-political environment, such as Brexit and COVID-19, we remain a highly competitive option for companies at home and abroad who have a requirement for British manufacturing.

Let’s look at what makes us so unique….

Skilled manufacturing professionals – for centuries, the UK has had a distinguished history of manufacturing. Through the generations, we have demonstrated a strong tradition of producing expert engineers and technical craftsmen and women, which sustains to this day.

Education – the UK has some of the best universities in the world, with some of the most talented young engineers graduating every year, many of whom go on to embark upon careers as design engineers, product designers, and manufacturing professionals.

Dynamic supply chain – there are a range of support services which are available to manufacturers, such as management consultants and financial experts.

Research and Development (R&D) – the UK Government has invested in many research and development facilities to support companies who are looking to manufacture products in the UK.

Infrastructure – the UK has a well-developed infrastructure, including excellent transport networks and strong access to raw materials.

Legislation – clear and robust legislative policies which have been passed into law to protect businesses and to support entrepreneurial endeavour, including intellectual property (IP), patent protection, and trademarking laws.

Pro-government business support – post-Brexit, the UK Government has introduced a range of measures to support British businesses, including regulatory reform and tax incentives.

Stable political environment – the UK is a stable democratic country which has one of the strongest legal systems in the world. This stability provides businesses looking to manufacture products in the UK with confidence and security that any capital investments will be protected under the right of law.

Are You Looking to Reshore?

If reshoring is something you’re considering, we’d be very interested in hearing from you.

We’ve taken on several new customers lately who have moved their manufacturing projects from overseas territories such as China back to the UK.

If this is something you’re considering, please contact us on +44 (0) 121 550 5868, or email info@rptechnologies.co.uk.

Knowledge Hub

In Focus: The Hurco VMX60SRTi XP

In the second of our ‘In Focus’ series of articles, we profile the Hurco VMX60SRTi XP CNC Machining Centre.

This state-of-the-art 5-axis CNC Machine is the latest in modern machining technology.

RP Technologies purchased this expensive piece of equipment at the end of 2022, and with all the CNC machining work we’ve received since, it’s proved to be a very timely investment!

Let’s take a moment to review this machine in more detail, examining some of its unique characteristics and features, and trying to understand the importance of its role here at RP.

The Importance of CNC Machining to RP Technologies

The manufacture of CNC machined parts is one of our key services here at RP Technologies.

Along with toolmaking, injection moulding and rapid prototyping, CNC machining is central to what we do. We have, over the years, steadily developed the CNC department, investing in new machines and adding to our experienced team of CNC Programmers and Operators.

We have 10 CNC machinists and 20 CNC machines, 18 of which are 3-axis and 2 which are 5-axis.

We machine parts for prototype and low volume production runs in most metals and polymers. We start as low as 1 part, and we specialise in highly complex components that require precision engineering.

Our CNC machining projects are all supported by ISIR documentation.

All our CNC machining work is carried out in-house at our purpose-built production facility here in the West Midlands. We do not outsource anything. We like to ensure the highest levels of product quality, using the best CNC operators and machines that money can buy.

The latest addition to our CNC Tool Room is the Hurco VMX60SRTi XP 5 Axis Machining Centre, which we purchased in December 2022.

Let’s look at this new state-of-the-art piece of machinery more closely….

What is the Hurco VMX60SRTi XP?

The Hurco VMX60SRTi XP is a new, state-of-the-art 5-axis CNC Machining Centre. Its enhanced technologies have the capabilities to boost production capacity, increase operational efficiencies, and improve accuracy.

The Hurco VMX60SRTi XP has several new features. It has an enhanced graphics package, which is 1.4 times faster than its predecessors. Its advanced Ultimotion feature reduces cycle time by up to 30%, which will allow us to offer even more competitive lead times.

The design configuration utilises a swivel head and a C-axis rotary torque table that is embedded in the machine table. The increased size of the table provides maximum versatility, with the extra space being ideal for the performance of secondary operations.

The VMX60SRTi XP also boasts the enhanced version 10 software, superb MAX5 control, and improved, energy saving LED cabinet lighting. The Optional Ultimonitor incorporates Ultinet (networking) and ESF (Extended Shop Floor) capability of remote diagnostics.

There is an ergonomically designed control console with two 19” LCD touchscreens, 4GB RAM Memory, 10,000 block lookahead, 128GB Solid State Hard Drive, and a 2.7GHz Dual Core Processor. There is also a 12K Swivel-Head Spindle with X, Y, and Z axis travel.

The swivel head means that less manipulation of the component is required, making the machining process more precise and efficient to perform. The VMX60SRTi XP can also be used as a full capacity 3-axis machine during times when 5-axis parts are not being made.

The VMX60SRTi XP is ideal for low-medium volume work. It also has a larger part capacity than many earlier models. Its expert design and advanced technology help to deliver the highest performance capabilities to any machining application.

Key Benefits of the Hurco VMX60SRTi XP 5 Axis CNC Machining Centre

  • The swivel head, or “B” axis as it’s also known, has substantial advantages over the traditional trunnion 5 axis machine in that less manipulation of the component is required
  • Heavier or larger part capacity – only the vertical or load bearing is required
  • The generous size of the rotary table provides maximum versatility
  • The extra table space can be used for secondary operations or 3-axis work
  • Wide ranging application – the Hurco VMX60SRTi XP is ideal for any machining project
  • Time saving and efficient, allowing cost savings to be passed on to the customer
  • Perfect for low volume work or batch production

The Hurco VMX60SRTi XP – Key Statistics

>> 1,676 x 660 mm table, 1,360 kg capacity

>> Travels: 1,524 x 660 x 610 mm

>> Ø 600 mm embedded rotary table, 500 kg capacity

>> 12,000 rpm motorized spindle

>> 36.5 kW peak spindle

>> 40 station automatic tool changer

>> SK 40 spindle taper

>> 32 / 32 / 24 m/min rapid traverse rates

>> Patented UltiMotion HURCO technology, which reduces cycle time by 30%

>> Improved surface finish quality with UltiMotion

What This Means for RP

The introduction of the Hurco VMX60SRTi XP demonstrates RP’s commitment to making continued investments in our overall manufacturing and CNC machining capabilities.

This machine will help us to improve lead times, whilst also giving us the opportunity to produce even more complex and demanding metal and plastic machined components.

It will complement our other 5-axis and 3-axis CNC machining centres, providing added depth, improved capacity, and enhanced capability.

It will be the ideal tool for our prototype and low volume work.

What to Do Next?

Do you have CNC machining requirements for a low volume or prototyping project?

If so, we could be your perfect manufacturing partner.

Please call us today on +44 (0) 121 550 5868 or email info@rptechnologies.co.uk.

Knowledge Hub

Silicone Tooling vs Hard Tooling

Introduction

There are two main types of tooling which are employed in the injection moulding process: silicone tooling and hard tooling. It is important when embarking on a new project that you pick the right tooling method for the job. This will largely depend on what types of parts you want to produce, but there are also other factors to consider, such as financial constraints, speed of delivery and volume.

As with all injection moulding, the quality of the tool build will ultimately determine whether the finished components are of a high standard, durable, visually appealing, and fully functioning.

It is, therefore, extremely important to choose the right tooling process in order to achieve the intended outcomes for the final components.

To do this, we will need to explore silicone tooling and hard tooling in more detail. We will then compare these methods and review the advantages and disadvantages associated with both.

Silicone Tooling – What is it?

Silicone tooling is ideal for producing low volume rubber mouldings and urethane castings

Silicone tooling is less expensive than hard tooling and is usually used in cases where the production run is less than 100 parts. Most moulds can be relied upon for approximately 25 shots per cavity.

Silicone tooling is ideal for designers, engineers and manufacturers who are in the prototyping phase and are trialling a concept before moving to larger scale production. It is also used for consumer-based market testing, before final design iterations are made and the product is signed off for manufacture.

Hard Tooling – What is it?

Hard Tooling is made from metal, in our case aluminium, and it is known for its reliability over time. With hard tooling, manufacturers can work to very tight tolerances, making it the logical choice for projects where the final components are complex in their design.

Aluminium Tooling has a greater degree of flexibility than silicone tooling, in that it will support prototyping, as silicone tooling will, but it will also lend itself to pre-production and production volumes.

Silicone tooling – the Advantages and Disadvantages

Advantages

A cost-effective route into production for new entrants, or for those with limited production needs

Capable of facilitating short runs of products

Ideal for prototyping before committing to larger volume production

Often used for trialling and market research with consumers

Short lead times and fast order turnarounds

A variety of materials are available

Disadvantages

Lacks the resistance and durability of hard tooling, hence the term ‘silicone tooling.’

Silicone tools can only produce a very limited number of parts

Limited material choice

Once tooling has been completed, modifications to the tool are very difficult to implement

Unsustainable method with costs spiralling over time. Once the tool has worn out it will need to be replaced, which will involve more expense and potential problems with achieving part consistency

Hard Tooling – the Advantages and Disadvantages

Advantages

Ideal for producing higher volumes of parts over time (potentially well into the 100,000s)

Made from hard metals and so can withstand multiple production cycles

Modifications can be carried out to the tool more easily

Can achieve much stricter tolerances than silicone tooling

A single hard tooling mould can have several cavities, which will allow for multiple quantities of a part to be created at the same time

Hard tooling can withstand higher temperatures during production than silicone tooling

Although silicone tooling lends itself to many materials, options are even greater with hard tooling

Ideal for projects where manufacturers must adhere to testing requirements and function standards

Parts with rudimentary designs can be used immediately

Disadvantages

More time consuming to produce hard tooling

Costs are higher with this method of tooling

The tooling itself requires specialist precision machining and finishing capabilities

Summary

Silicone tooling is more suited to short runs for prototyping, market testing or very low volume production. It is a cost-effective option which offers favourable lead times and fast turnarounds. It is less suitable for production cycles and the tooling is less durable and long-lasting.

Hard tooling is ideal for higher volume production runs and the tooling is more resistant. Modifications can be made to the tool relatively easily, and hard tooling can achieve much stricter tolerances. However, it also involves greater upfront investment in time and money.

As with all manufacturing processes, the product designers and engineers will have to determine what the final component is to be used for before deciding which tooling route to take. These considerations will be based on the functionality, form, appearance, and volume of the part required. Cost and time considerations may also be factors.

The product owners will also have to determine what stage they are at in the product development phase and decide accordingly on the best option.

If you would like expert advice on a project which you are embarking upon, please either email us at info@rptechnologies.co.uk, or call +44 (0)121 550 5868, and we will be happy to assist you.

Knowledge Hub

New Product Development

What is New Product Development?

New Product Development (NPD) is the act of creating a new commodity or product for the commercial marketplace. It is essentially a series of steps that are taken from inception to roll out which see a new product designed, manufactured, and unveiled to the world.

NPD is an important activity for most companies. It is a means by which companies can stay ahead of their competitors, provide added value to their customers, and increase organic growth.

New products provide an opportunity for companies to sell more units and therefore increase revenue streams. NPD activity also allows companies to grow their market shares.

In a world where there is strong consumer demand, greater competition, and where changing digital and technological advancements are emerging all the time, it is important for companies to keep driving forward and developing their product range. Standing still in this environment will likely lead to rival companies gaining competitive advantage.

Fast-moving change has become an accepted – and expected – part of consumer culture. Customers of all types in all different industries have an expectation for companies to adapt and evolve, and for their product range to develop in a manner which reflects these rapidly changing times.

New products are designed to either solve an existing customer problem in a new or innovative way, or to enhance or move forward a similar product which is already out there in the marketplace in a much more rudimentary format.

The product development process is multi-layered and involves many internal and external stakeholders. As noted above, it involves several different steps, or stages.

Let’s look at these stages in more detail….

The Key Stages of New Product Development

Idea Generation

All new products start life in the same way – as a concept or idea. Each product is the brainchild of an individual or group of individuals.

The process usually involves a brainstorming session between product designers and product engineers. It may also include other stakeholders, such as marketing experts.

At this stage of the process, ideas are discussed and explored, with the relative merits of each being assessed before the optimum concept is identified for further development.

If done correctly, the idea generation phase should be the consequence of detailed research which has already been conducted to identify what gaps exist in the current market for NPD, and what problems any potential new product should be introduced to solve.

Research

Once the idea generation phase of the process has been completed, the Research phase begins.

By this point, a product idea will have been formed. The next step will be to further develop this idea by testing its likely suitability for the current marketplace.

To do this, research must be conducted. This research can take many different forms and can comprise either market research (where a sample of the target market is selected to answer questions on their consumer habits and tastes) or competitor analysis to determine how to potentially position this new product in relation to the competitors’ offerings.

This stage of the process also provides an opportunity to gain feedback from target consumers on what they think of your ideas before you advance too far down the road of developing your new product.

Planning

This is where the information collected in the previous stage is reviewed against the original concept, and any changes to the idea based upon the feedback provided are implemented.

At this stage in the process, the strategic goals and objectives for the product can be reviewed and finalised, and the overall concept can be refined to reflect these milestones.

The estimated product value and capacity can also be determined.

As soon as the concept has been clearly defined, the next step of the planning phase will be to source suitable manufacturing partners to help to take the project forward.

It is also where marketing professionals, either in-house or commissioned from outside of the organisation, will have to start thinking about how to successfully bring this new product to market once it is ready to launch.

Prototyping

The prototyping phase is where a physical prototype of the product is created with the help of whichever manufacturing partner/s has been chosen during the planning stage.

It is essentially a to-scale basic version of the product.

The prototype will help product designers and product engineers to understand how the product functions and looks in its true physical format.

Prototyping is a very important phase in the product development cycle. No matter how impressive the product concept might be, or how meticulous the planning, the prototyping phase will often unearth several key aspects of the design which have not necessarily been accounted for in the theoretical planning stages.

It also allows manufacturing partners to find solutions to complex manufacturing challenges before full scale production begins. It is important to go through this process so that the best solution for the manufacture of the product can be decided upon before producing the product at volume.

Consumer Testing

This is where consumers are invited to test the prototype and to provide feedback on its functionality, appearance, and positioning within the current marketplace.

The testing phase is essential in order to assess the commercial viability of the product and as a way of identifying any prototyping issues that may need to be ironed out before launch.

Often, the results of this feedback will mean that changes need to be made to the prototype to reflect consumer opinion.

It may be necessary to go back and forth between the prototype and the testing phases, making multiple changes and conducting several stages of consumer testing in order to get the final prototype absolutely right.

As soon as the prototype is produced in a form that consumers and product engineers are happy with, full-scale product development can begin.

Product Development

As soon as the prototype phase is concluded, a final cost analysis will be conducted to determine the commercial feasibility of producing the finished prototype at volume.

An original cost analysis should have been conducted before now, most likely at the research or planning stages, but a final analysis will also be needed if there have been any changes to the prototype since those preliminary calculations were made.

Providing the numbers still add up, full scale production can commence.

The production process will be carried out by the manufacturing partner identified at the planning stage. This can be the same production company who produced the prototype or a different one.

If costs prove to be prohibitive, or if a suitable prototype which meets the original objectives cannot be produced within the accepted cost parameters, the project may be abandoned.

Branding

At this stage of the process, the final product will have been produced and will be ready for the marketplace. Before it can be made available to the public, the branding of the product will need to be concluded.

This includes the development of the brand name, product slogan, packaging, price points, and the marketing message behind the product.

Marketers will also seek to position the product in the optimum space relative to its competitors. If it is a product which will be sold directly to the consumer, agreements with distributors such as retail outlets may also need to be finalised at this stage of the process.

Product Launch

This is the stage of the process where the product enters the public domain. The product development team has completed their work, and the exciting moment has arrived. It is also the phase of NPD which is known as the commercialisation phase, or the market launch.

At this stage, the product becomes available for purchase. The marketing strategy supports the sales of this new product, helping to raise awareness and create interest amongst the target demographic.

This is the stage of the process where the product takes on a new life of its own, independent of its creators and manufacturing partners.

It is also the first stage of the process where the product can start to deliver sales revenue, and a financial return can be enjoyed. This is where the company can begin to recoup some of the money invested in the product’s development, with new gains compensating for the expenditure incurred in getting the product to market.

Post-Launch Review

As with any big commercial undertaking, it is important once the work has concluded to review the process in full. This review should include each of the key players, including the product designers, product engineers and marketing specialists, to determine what was successful and what wasn’t.

In the fast-moving pace of modern business life, this is the stage of NPD which is either usually forgotten or neglected. But it is an essential element of the wider process.

NPD can be an expensive and time-consuming process. It is also central to the success of the company since the new products which are launched are crucial to achieving success for the organisation in the many months and years ahead. If mistakes have been made, it is important that these mistakes are not repeated when the next new product is launched.

Too many mistakes over a long period of time can end up harming the quality of the final output. If products are sub-standard when they are launched, or positioned incorrectly, they will not achieve the sales targets that have been set for them, resulting in reduced revenues and costly expenses. This can have a detrimental affect on company growth and performance, and can also mean that competitive advantage, as well as market share, is lost.

Identifying mistakes in the process and implementing this feedback into the product development process will ensure that future new products are given the best chance to succeed and flourish in the increasingly competitive marketplaces of the 21st century.

Knowledge Hub

CNC Machining

What is CNC Machining?

CNC is the abbreviated term for Computerised Numerical Control. This is a computerised manufacturing process in which pre-programmed software and code operates production equipment. This equipment is often complex and includes grinders, lathes and turning mills.

As a subtractive manufacturing process, a range of tools are used to cut contours and shapes into a workpiece in order to create parts. The high level of automation means that CNC machining is suitable for both prototype and low-medium volume production.

A 3D model of the design is created using CAD software and is converted into a CNC programme. The machine is then programmed using the G Code, which informs the machine of precise measurements, such as speed, feed rate and coordination. The machine then removes material from the workpiece to produce the custom-designed part.

Many different types of materials can be CNC machined, including metals, plastics, glass, and foam.

Different Types of CNC Machining

3-Axis Machining

The two main types of 3-axis machining are CNC milling and CNC turning. The chief distinction between the two is that CNC milling uses a rotating tool and CNC turning uses a rotating part.

Let’s now look at each of these methods in more detail:

CNC Milling

During CNC milling, the cutting tool is attached to a spindle and can move in three different directions: along the X, Y and Z axes. It rotates at high speed to remove material from the workpiece.

Multi-axis milling allows 4 or more axes to provide added dexterity to the operation. 5-axis machines are commonly used and can create all kinds of parts within the accepted parameters of CNC milling.

CNC milling produces a flat or sculptured shape in the workpiece. The operation is performed on a milling machine using a multi-point cutting tool, also known as a milling cutter. The cutting tool cuts intermittently during the process.

CNC milling is ideal when straightforward cutting is required. However, for more complex geometries 3-axis CNC milling can have its limitations. As there are only 3 axes, the cutting tool may not be able to interrogate every part of the workpiece.

An advantage of this particular method is that parts can be produced to high tolerances and the setup costs are low.

CNC Turning

For CNC turning, the workpiece is held in a chuck and rotated, and the tool is applied to the object piece to remove material. A stationary cutting tool is applied to the surface of the rotating bar stock, and unwanted material is removed. There can be several cutting tools used to achieve this.

Unlike with CNC milling, the tool does not rotate but moves around the workpiece radially and lengthwise. It is a highly accurate machining process which is suitable for achieving tight tolerances.

The speed of the cutting will be dependent on the type of machine, the material being used and the main features of the component.

The cutting tool remains in continuous contact with the workpiece for the duration of the process. It is performed using a single point turning tool, also known as an SPTT.

CNC turning machines are also known within the industry as lathes. The increased machining speed reduces manufacturing costs, improves lead times, and makes large volume production more viable. However, because it is only suitable for cutting cylindrical shapes, its geometries are limited. It is, therefore, more commonly used as a secondary step when an additional feature is required.

5-Axis Machining

5-Axis machining (multi-axis machining) is a versatile process which provides more options and scope to the machining process than either CNC milling or CNC turning.

5-axis refers to the number of directions in which the cutting tool can move. It moves across the X, Y and Z linear axes, and rotates on the A and B axes. This means that it can approach the workpiece from any direction, thus adding greater versatility, accessibility, and sophistication to the process.

In essence, it means that a single component can be machined at 5 angles all at the same time.

There are savings to be made in terms of cost and lead times, and it is also possible to achieve more complex geometries than those which would be achievable with 3-axis machining.

This method also produces a smoother surface finish, and the accuracy of the final parts is usually high. The process is single setup, which also reduces the amount of manual labour required.

Advantages of CNC Machining

High level of automation which reduces the need for human input

Ideal for rapid prototyping, as parts can be produced very quickly

Ease of repeatability

Cost-saving exercise for prototyping or one-off designs, as there is no need to make custom tooling

Parts produced are often highly accurate and capable of achieving tight tolerances

CNC Machining by Industry

CNC machining is used for applications across a wide variety of business sectors. It is particularly useful in industries where a high level of precision and accuracy is required. Products and components which need to pass rigorous safety tests will significantly benefit from CNC machining.

Let’s take a look at the specific applications of CNC machining in some key business areas…

Automotive – gears, pins, brakes, shafts, valves, axles, and cylinder blocks

Aerospace – manifolds, bushings, landing gear and engine components

Medical – surgical instruments, dental implants, titanium joints and orthotics

Electronics – housings, computer motherboards, breaker panels, RFI shields and electrical insulation

CNC Machining at RP Technologies

CNC Machining is an element of our services here at RP Technologies which often gets forgotten, but we do in fact have extensive experience in this area, with excellent state-of-the-art CNC machining centres, a highly competent CAD design team, and a team of vastly experienced CAM engineers.

We precision machine components in most metals and polymers to support product designers and engineers for prototyping or low volume production. Our direct machining capabilities allow for fast turnaround of components, including those which feature complex shapes and contours.

Our CNC Machining department is expanding all the time. In 2023, we employed four new CNC Programmers and also invested in our brand new state-of-the-art Hurco 5-Axis Machining Centre.

We have received a high volume of repeat custom and we have also picked up many new customers during this period of time.

By offering tooling, moulding and CNC machining under one roof, we can reduce your total project costs by providing a one stop solution without the stress of sourcing multiple suppliers.

More information about the type of CNC Machining work we are engaged in can be found on our CNC Machining page.

If you would like to make an enquiry or have a discussion with us, please email info@rptechnologies.co.uk, or call +44 (0) 121 550 5868.

Knowledge Hub

Additive Manufacturing vs Injection Moulding

In our two recent technical articles, we investigated additive manufacturing and injection moulding. We explored them as two very distinct processes which are aimed at achieving the same thing…. the creation of plastic components for prototyping or low-medium volume production.

We will now look to summarise what we have learned from our examination into additive manufacturing and injection moulding.

We will also highlight the key advantages and disadvantages of both methods.

Injection Moulding

Injection moulding refers to the manufacturing process of producing parts by injecting molten material into a mould. The material, often plastic, is injected into the mould cavity in order to create a part. Once inside the mould, the material quickly cools, and the part takes its final solid shape.

Additive Manufacturing

Additive manufacturing is the process of creating parts by adding layers of material. Using this process, there is no need to create a mould to produce a part. The part is made by creating a CAD file which then talks to a machine and adds material until a part is formed.

Let’s look at the key parameters of both methods, examining in more detail the specific pros and cons associated with each process.

Injection Moulding

Pros:

  • Advantageous if large volumes are required
  • Produces parts that are high in precision
  • The process allows for great ease of repeatability
  • Extensive choice of materials with different properties
  • Highly suitable for mass production
  • Generates production intent parts from the tooling, making them ideal for market testing
  • Low cost per part. This is particularly useful in circumstances where parts will need to be run off the existing tool at regular intervals over a sustained period of time
  • Greater scalability: can produce low volume prototype parts through to tens of thousands
  • Ideal process for components that require high detail
  • Parts produced often have greater strength and durability
  • More suited to larger components than additive manufacturing
  • Perfect choice for bulk production
  • Results in a better product surface finish
  • Improved functional integrity of parts, which are more visually appealing and reliable
  • Most plastic used during this process can be reground, recycled and reused

Cons:

  • Up-front capital investment in tooling can be prohibitive
  • This process can result in higher amounts of plastic waste
  • Increased project turnaround times
  • It can be challenging to change tooling to optimise or iterate new designs

Additive Manufacturing

Pros:

  • Ideal for rapid prototyping as this process allows for quick and easy production runs
  • Works well for low volume production runs
  • Ideal for complex or intricate component designs where detail is important
  • Low entry costs and reduced material costs
  • Suited to projects where the design goes through several iterations
  • Highly flexible and agile process which ensures precision of final design
  • Modifications can be made easily using 3D modelling software
  • Time and cost savings can be achieved where there is no requirement to build a tool
  • Produces less material waste
  • Parts produced may be more ergonomic
  • Reduces inventory and storage burdens as there is no tooling that needs to be housed
  • Increased digital inventory reduces carbon footprint and improves sustainability credentials
  • Manufactures directly from 3D CAD files so the location of manufacture is more flexible
  • As it is a digital process, it can be stopped post-part build or post-run, and restarted with punitive cost

Cons:

  • Suitable for small plastic parts or components, but there are limitations with larger products
  • Unsuitable for large volume production runs
  • This method doesn’t allow for printing in production intent grade material
  • Surface finishes can be problematic, often creating a ridged surface, which can be an issue when producing parts that will rub against one another
  • Despite the initial set up being quick, the overall process can be slow, as most printers can only build one item at a time, which creates a significant challenge for detailed designs

Summary

Additive manufacturing and injection moulding are two very distinct processes with a range of advantages and disadvantages associated with both methods.

Additive manufacturing is ideal for very small production runs and offers quick turnaround times. Changes to the designs can be made easily and it is a process which suits the production of relatively small components.

Injection moulding is ideal for parts of all sizes and can accommodate prototype, pre-production, and production volumes. The costs are low per part and the process allows for ease of repeatability.

Choosing the right process is dependent on the end application of the component. Knowing how the product must look and function will usually determine which process a customer chooses. Such factors might include smoothness of finish, strength and durability, and heat or pressure resistance.

Industries that are highly regulated, and in which product safety and liability is a key factor, such as the aerospace and consumer goods sectors, may also dictate which process is most suitable.

However, it is worth noting that although this article has explored these two processes in direct opposition to one another, some now argue that both practices can occupy a common ground.

Indeed, many manufacturers and product engineers now regard additive manufacturing and injection moulding as complimentary rather than competing technologies. Combining these techniques can reduce pre-production cycles and allow for better testing and manufacturing.

To Find Out More:

If you’re about to embark upon a project and would like to know more about injection moulding, please contact us at info@rptechnologies.co.uk, or call +44 (0) 121 550 5868, and we will be happy to discuss your requirements.

Knowledge Hub

Injection Moulding

What is Injection Moulding?

Injection moulding is a manufacturing process where parts are produced by injecting molten material into a mould. It can be employed to produce prototypes, or for full scale mass production volumes where high volume units of identical items are required.

Injection moulding can be carried out using several different materials, such as metals and glasses. However, for the purpose of this article, we will be focusing solely on its more commonly used material: thermoplastic polymers.

The Injection Moulding Process

The first stage of the injection moulding process is the creation of the mould tool itself. This will be made from metal, usually aluminium or steel. At RP Technologies, we mostly manufacture tooling in aluminium. There are several reasons for this. Aluminium Tooling provides greater speed of manufacture, is a more cost-effective solution, and it is more suited to low volume manufacturing. It also reduces time to market for new products.

Our tools are all made in-house by our skilled and experienced toolmaking team, who precision machine them to match the features of the product. The tool design is created, prototyped, and tested using computer aided design, or CAD.

Each mould tool has two parts: the cavity and the core. The cavity is the fixed part, and the core is the moving part. At RP, we create tools that are capable of producing parts which often have complex design features.

To test the tool, a suitable thermoplastic must be selected. Choosing the correct type of plastic for the end application is essential, in order to ensure that the final component has the right properties. Each thermoplastic has different characteristics and behaves differently when exposed to high temperatures, chemical substances and different pressures. This is due to its molecular structure.

Once the optimum plastic has been identified, the moulding process can begin. Plastic polymers, or pellets, are fed into the machine, and begin a slow passage through the barrel where they are heated until they become molten. The pellets are then injected into a clamped mould. This is known as the shot.

Once the molten plastic has been injected into the tool, the cooling process begins immediately. The tooling is heated or cooled, depending on the type of polymer being moulded, to give optimum cycle time and product quality to the moulded component.

As soon as this stage in the process has been completed, the solid plastic product can be ejected from the tool by purpose-built mechanisms known as ejector pins.

When the ejection is complete, the clamp is shut again, ready for the cycle to begin once more.

In some instances, finishing processes may be required, such as polishing or removing excess plastic.

Advantages of Injection Moulding

Ideal for projects which require high repeatability

Highly efficient process which allows for potentially hundreds of parts to be created in short cycles

Design flexibility – allows for complex components, shapes and geometries to be achieved

High levels of product consistency – essential for projects where tight tolerances are required

Enhanced strength – fillers, additives and additional moulding services such as insert moulding can make for more long-lasting products

Greater flexibility of material choices and colours

Recyclability of material – material waste can be reground, melted, recycled and reused

Injection Moulding by Industry

Injection moulded parts are everywhere. In your office and in your home. We are surrounded by plastic injection moulded components. They are produced everywhere for universal consumption.

But there are several key industries that have come to rely on the injection moulding process more so than others. Let’s take a closer look at some of these key market sectors….

Medical – High standards of quality are key for medical devices and equipment, which is what makes injection moulding such a popular choice for designers and manufacturers within this marketplace.  RP Technologies has helped bring to market many medical products, including surgical instruments, drug delivery systems, housing for monitoring apparatus, diagnostic test kits and prosthetics.

Consumer Products – The production and consumption of consumer products would not be possible without injection moulding. Toy manufacturers are particularly reliant on the process, in order that they can create identical plastic products that are safe, durable, versatile and visually appealing.

Electronics – Similar to the world of telecommunications, the electronics industry relies on the injection moulding process to produce plastic components which can house complex wiring, circuit boards and cables.

Telecommunications – The injection moulding process allows manufacturers to supply telecommunications companies with plastic housing units, attachments, adapters and other parts to facilitate the transmission of data and information through countless numbers of fibre optic cables.

Automotive – Injection moulding allows for the mass production of highly repeatable parts which are high quality, reliable and consistent. This makes it an ideal manufacturing partner for the automotive industry. If advanced automation techniques are available, the injection moulding process can also be very cost-effective. Injection moulded components also offer weight saving opportunities by utilising metal replacement polymers to reduce overall vehicle weight and increase fuel efficiency.

Aerospace – The high level of product consistency associated with injection moulded components means that tight tolerances can be achieved. This is particularly important for industries such as the aerospace sector, where safety, quality and component integrity are of the utmost importance.

RP Technologies has many customers in each of the above industries, as well as in other industries. We are specialists in producing high quality parts on time and to a high standard. We have a reputation for specialising in complex component designs which many of our competitors would not be willing to produce. That is why we are the first choice for many product designers and engineers.

If you have an injection moulding project which you would like to discuss, please contact us at info@rptechnologies.co.uk, or call +44 (0) 121 550 5868, and we will be happy to assist you.

Knowledge Hub

Additive Manufacturing

What is Additive Manufacturing?

Additive manufacturing is the process of building three-dimensional objects by adding layers of material. It is the opposite of subtractive manufacturing, which involves removing material from a workpiece to create a final product.

The three-dimensional object is constructed from a CAD model, or digital 3D model. A machine is used to read the instructions provided by the CAD software in order to build the object according to the dimensions specified in the design.

The Additive Manufacturing Process

A design is created using computer aided design (CAD) software. This design is a 3D model which represents in graphical format the look and dimensions of the intended physical object.

This model is then translated into .STL format. This is a triangulated representation of a 3D CAD model.

This model is then divided into layers – a process known as slicing. This is where the 3D model is converted into a sequence of 2D layers. The slicer produces a text file which the 3D printer can read.

In the manufacturing process, the design is converted into a solid object. The machine will read the instructions sent to it by the text file to build the slice.

The file is loaded into a 3D printer. The machine is prepped, including the loading of material, and, when the machine is ready, the print is started. Through a combination of layer-by-layer deposition (FDM/FFF), laser curing (SLA) or laser fusion (SLS, SLM), the three-dimensional part is created.

The product will then undergo verification and testing. During this phase, dimensions, tolerances and geometries will be verified. Validation of the product can be carried out either by using sophisticated machinery, such as a CMM machine or 3D scanners, or through manual examination.

Once the 3D printing of the object is complete, the post-processing phase begins. This involves the removal of the object from the print bed. This can be a multi-faceted process, and, depending on the 3D printed part, it may involve the removal of support structures, sintering, or improving its visual appearance, either by sanding, polishing, painting or electroplating the final object.

The post-processing phase will be different per work object but will usually involve some level of cleaning or treatment to improve the exterior of the product.

The piece is then re-examined one last time, which may include dimensional or surface finish inspections.

Advantages of Additive Manufacturing

Allows for the creation of bespoke parts with intricate shaping and complex contours

Less material wastage than with subtractive manufacturing

Digital designs can be altered quickly, making the process ideal for rapid prototyping

Shorter lead times

Smaller production runs means cost reduction for customers

Virtual inventory means there is no real requirement for warehousing and storage space

Recreating and optimising legacy parts is easier with CAD files and a printer, rather than using potentially obsolete machinery

Greater ease of assembly – components that would normally need to be assembled from various elements can be fabricated as one object. This has further cost and lead time benefits, while minimising the amount of manual labour required. This process also improves the integrity of the finished object, adding improved strength and robustness.

Types of Additive Manufacturing

There are seven main types of additive manufacturing, each with its own processes, layering and equipment.

VAT Photopolymerisation (SLA and DLP) – Also known as stereolithography. Uses a vat of liquid photopolymer resin and a laser beam draws a shape in the resin, creating a layer. The production process is quick using this method, but the post-processing phase is lengthy.

Material Jetting – The print head is above the platform, and material is deposited onto the surface in the form of droplets. These droplets create a layer. The process is repeated, resulting in the building of one layer after another. This method is often used to create models or prototypes.

Binder Jetting – A powder-based material is applied to the build platform and the print head deposits the binder on top. A binder fixes the layers together. This process is repeated to create more layers until the product is finished. This method is quick and allows for customisation. Binder jetting is sometimes used to create medical and dental devices, as well as aerospace components.

Material Extrusion (FDM or FFF) – Material is drawn through a nozzle, heated, and deposited in a continuous stream. The nozzle moves horizontally while the platform moves vertically. The material is heated when it is applied so that it fuses to the previous layer, thus creating layer-upon-layer. As with binder jetting, polymers and plastics can be used, which provide strong structural support. This method is popular in the automotive sector.

Powder Bed Fusion (PBF) – Powder is applied to the platform and a laser fuses the powder before a second layer is applied with a roller or a blade. There are different types of powder bed fusion, including Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Electron Beam Melting (EBM) and Direct Metal Laser Sintering (DMLS). Metals and polymer powder materials are used for prototypes. Powder Bed Fusion is one of the more time-consuming types of additive manufacturing.

Sheet Lamination – Binds layers using ultrasonic welding or an adhesive. There are two main types: ultrasonic additive manufacturing (UAM) and laminated object manufacturing (LOM). UAM uses metal bound together with ultrasonic welding, whereas LOM uses paper bound together using an adhesive. The material is placed on a cutting bed and layers are applied and bonded to that material. The shape is cut with a knife or a laser. Low cost and quick but lacks accuracy. Used for prototypes.

Directed Energy Deposition (DED) – a four or five axis arm deposits melted material around a fixed object. The material is melted by a laser and then solidifies. This method is often very accurate, but the finish achieved varies based on the type of material used.

Next, we will be looking at the injection moulding process, understanding its key principles, characteristics and processes, before examining how it differs from additive manufacturing.

Knowledge Hub

In Focus: Ejector Pins

Injection moulding is a complex, multi-faceted process. It involves several different stages, including a design phase, the building of an aluminium tool and the subsequent moulding of plastic components.

Throughout these many stages, there are various elements which contribute to the success of the overall operation. These elements are often overlooked or taken for granted, but if care is not taken to ensure that each of these details has been thoroughly considered and planned for, the overall result may be significantly compromised.

In the first of our ‘In Focus’ series, we will be highlighting the importance of ejector pins to the injection moulding process.

Let’s look in more detail at what they are, and what they do…

Ejector Pins

Ejector pins are located within a mould cavity and are used to push the finished plastic component from the mould. This allows each piece to be released so that a steady flow of automation can continue.

Also known as knockout pins, ejector pins extend and contract in a repetitive motion to force the plastic from the mould. They are typically made from steel.

When the mould is opened, the pins extend into the mould cavity and force the plastic part out. They then retract, the mould closes and refills, and the process begins again.

Each set of ejector pins is customised to match the size, shape and structure of the plastic component that they will have to eject. The location of the pins will depend upon these factors and must be given careful consideration during the design process.

Main Types of Ejector Pins

Through Hardened Pins: heat treated and durable. Often used in plastic injection moulding and can be used in temperatures up to 200 degrees.

Case Hardened Pins: also known as nitride pins. Harder than Through Hardened Pins and can be drilled or tapped. Can be used at temperatures exceeding 200 degrees.

Black or Oxidated Pins: for use at high temperatures, usually between 600-1000 degrees. Have a self-lubricating coating which is black. Often used in automotive production.

Value of Ejector Pins to the Injection Moulding Process

The introduction of ejector pins to the injection moulding process has been crucial for many reasons. They have become an integral element of the process of creating machined parts.

Key benefits:

  • Allow for automated operations
  • Enhanced production speed
  • Reduced project delivery times
  • Improved consistency in the design and quality of finished components
  • Reduced wastage

Drawbacks

As with anything, there are certain considerations to make when employing the use of ejector pins in the injection moulding process.

Here are some of the potential issues which can be encountered:

Dents/Pin Marks

When the ejector pins push the component from the cavity, they can sometimes leave an imprint on the component itself. Upon closer inspection, the component may appear to be dented, or marked. These dents can make the product less durable, and can, in cases where the impact has been too forceful, result in the product failing to stand up to scrutiny and splitting during use.

The best ways to combat this are to ensure that the locations of the ejector pins are positioned to ensure that there is equal distribution of force when the plastic is ejected from the mould cavity.

Ejector pins should always be placed in a balanced manner in relation to one another to allow for consistent pressure to be applied across the surface area of the component.

They should also be located on the even, flat parts of the component, rather than on the edges of the component.

There will need to be an even distribution of force applied to the surface area of the component. If the ejector pins are located incorrectly, the plastic component will not be cleanly ejected from the tool, which will slow down the automation process.

Consultation with a customer is sometimes necessary to ensure that ejector pins are situated in the correct place. Care should be taken to ensure that the imprint of the pins does not inhibit or undermine the final use of the product. For instance, in some cases, customers may wish to weld on one side of the component. To do this, there cannot be any indentations or visible pin marks.

Damage to the Pin

Ejector Pins can be damaged due to the required amount of pressure that is required to eject the component from the mould cavity. If too much force is required, the pin can break.

This can result in increased timescales for the completion of projects, damaged components and higher levels of waste.

The easiest way to reduce breakage is to either employ more pins or to use pins with larger diameters.

Injection moulding is a complex, multi-faceted process. It involves several different stages, including a design phase, the building of an aluminium tool and the subsequent moulding of plastic components.

Throughout these many stages, there are various elements which contribute to the success of the overall operation. These elements are often overlooked or taken for granted, but if care is not taken to ensure that each of these details has been thoroughly considered and planned for, the overall result may be significantly compromised.

In the first of our ‘In Focus’ series, we will be highlighting the importance of ejector pins to the injection moulding process.

Let’s look in more detail at what they are, and what they do…

Ejector Pins

Ejector pins are located within a mould cavity and are used to push the finished plastic component from the mould. This allows each piece to be released so that a steady flow of automation can continue.

Also known as knockout pins, ejector pins extend and contract in a repetitive motion to force the plastic from the mould. They are typically made from steel.

When the mould is opened, the pins extend into the mould cavity and force the plastic part out. They then retract, the mould closes and refills, and the process begins again.

Each set of ejector pins is customised to match the size, shape, and structure of the plastic component that they will have to eject. The location of the pins will depend upon these factors and must be given careful consideration during the design process.

Main Types of Ejector Pins

Through Hardened Pins: heat treated and durable. Often used in plastic injection moulding and can be used in temperatures up to 200 degrees.

Case Hardened Pins: also known as nitride pins. Harder than Through Hardened Pins and can be drilled or tapped. Can be used at temperatures exceeding 200 degrees.

Black or Oxidated Pins: for use at high temperatures, usually between 600-1000 degrees. Have a self-lubricating coating which is black. Often used in automotive production.

Value of Ejector Pins to the Injection Moulding Process

The introduction of ejector pins to the injection moulding process has been crucial for many reasons. They have become an integral element of the process of creating machined parts.

Key benefits:

  • Allow for automated operations
  • Enhanced production speed
  • Reduced project delivery times
  • Improved consistency in the design and quality of finished components
  • Reduced wastage

Drawbacks

As with anything, there are certain considerations to make when employing the use of ejector pins in the injection moulding process.

Here are some of the potential issues which can be encountered:

Dents/Pin Marks

When the ejector pins push the component from the cavity, they can sometimes leave an imprint on the component itself. Upon closer inspection, the component may appear to be dented, or marked. These dents can make the product less durable, and can, in cases where the impact has been too forceful, result in the product failing to stand up to scrutiny and splitting during use.

The best ways to combat this are to ensure that the locations of the ejector pins are positioned to ensure that there is equal distribution of force when the plastic is ejected from the mould cavity.

Ejector pins should always be placed in a balanced manner in relation to one another to allow for consistent pressure to be applied across the surface area of the component.

They should also be located on the even, flat parts of the component, rather than on the edges of the component.

There will need to be an even distribution of force applied to the surface area of the component. If the ejector pins are located incorrectly, the plastic component will not be cleanly ejected from the tool, which will slow down the automation process.

Consultation with a customer is sometimes necessary to ensure that ejector pins are situated in the correct place. Care should be taken to ensure that the imprint of the pins does not inhibit or undermine the final use of the product. For instance, in some cases, customers may wish to weld on one side of the component. To do this, there cannot be any indentations or visible pin marks.

Damage to the Pin

Ejector Pins can be damaged due to the required amount of pressure that is required to eject the component from the mould cavity. If too much force is required, the pin can break.

This can result in increased timescales for the completion of projects, damaged components and higher levels of waste.

The easiest way to reduce breakage is to either employ more pins or to use pins with larger diameters.

Knowledge Hub

Spark Erosion

What is Spark Erosion?

Spark erosion is a machining process where a specific shape is obtained using electrical discharges.

Material is removed by generating sparks between an electrode and the workpiece.

It is often adopted in circumstances where complex or intricate shapes need to be engineered. Often, these shapes would be too challenging to create using conventional cutting methods. It is also employed when dealing with challenging or robust materials.

Spark erosion is known in the industry by many different terms, some of which you may have heard of before. For instance, you may have heard it referred to as electrical discharge machining (EDM), spark machining, or die machining.

Regardless of what name you may know it by, spark erosion can be an invaluable part of the metal fabrication process.

Let’s look at the process itself in more detail…

The Process

Spark erosion is performed on hard metals, most commonly either on aluminium or steel.

The process involves removing material.

This is achieved by two electrodes, which are mounted on the machine. Current is discharged between the two electrodes and the process is supported by an electric voltage.

Dielectric fluid is used to ensure that electric charges do not flow through the workpiece. It helps to insulate the workpiece until discharge can occur. This fluid also acts as a coolant for the workpiece and the electrode. This is an important part of the process as temperatures can become very high.

The cutting tool moves along the object, cutting a path as it goes. At no point in the process does the cutting tool itself ever touch the surface of the metal.

Sparks move between the workpiece and the electrode, where electrical energy becomes heat, and results in the melting of the work material.

Advantages of Spark Erosion

– A fine level of detail can be achieved. This is particularly important when working on projects where tight tolerances are required
– Supports projects where complex machining is necessary
– Used for a wide range of surface finishes/textures
– Harder materials can be cut more quickly compared to conventional machining methods
– No cutting contact, so the integrity of the material is always maintained
– Highly controlled process which allows for precision and accuracy, even on softer materials
– Versatile in its applications to metal. Spark erosion can be applied to many different types of metal, as long as they have low levels of electrical conductivity
– Ideal for jobs which require the drilling of very small holes

Spark Erosion at RP Technologies

Here at RP, spark erosion is a fundamental part of what we do, and it has been used on several key projects for many of our customers. It has enabled us to create tools which meet the specific requirements of the drawing specification.

Many of our competitors do not use spark erosion. Instead, they ask their customers to change their design so that it is less complex and can be machined more easily.

These changes can be time consuming and costly.

Our “Without Limits” philosophy means that we build tools to meet the specific needs of our clients, no matter how complex the component design or process.

Sometimes, we employ spark erosion to achieve this. Indeed, it has become such an important part of what we do that we want to ensure we are as well prepared for the challenge as possible.

Consequently, we have recently promoted one of our tooling engineers, Garry Duffield, to the full-time position of EDM Engineer. After receiving three months of intensive onsite training, Garry has now also completed a three-day training course at Sodick.

Our Use of Spark Erosion

We were recently asked by a new client to help them with a new-to-market product which was designed to improve environmental sustainability in the farming and agriculture sector.

The design of the product itself was so complex that many of our competitors would not have been able to produce the parts in a manner which was faithful to the original drawings.

The features were incredibly complex, and the shaping was so intricate that it required some very high precision engineering. One of the main problems was that we were unable to cut using traditional cutting methods and machines.

We engaged in open dialogue with the client, supporting them to achieve their original vision for the product. We gave them advice and guidance and talked them through the potential solutions.

Through some further in-house discussion between our CAD designers and production engineers, we decided that the only way to maintain the integrity of the design would be to use spark erosion.

We used our own onsite Sinker EDM AD55L machine to do this. This machine features Sodick’s Linear Motor Technology. It provides rapid acceleration while ensuring optimum performance at high speeds. It also reduces distortion and improves rigidity by 70%.

This machine allowed us to overcome the complexity of the engineering requirements, achieve a fast turnaround of parts, and to ensure a smooth finish without any flaws or discrepancies.

Our client was incredibly happy with the finished components, complimenting us on our speed of delivery, final product quality, and the way in which we were able to find an ideal solution to a complex problem.

Knowledge Hub

The Quantum 4 CMM Machine

Quality Engineering is a very important part of our work here at RP Technologies. Our Quality Engineers are there to ensure that the expectations of our customers are met at all times. They closely monitor projects to ensure that the highest levels of precision and accuracy are achieved.

In recent times, we have made considerable investment in this area of our business. This investment includes employment of additional members of staff, renovation of the quality offices, and investment in high precision measuring tools and equipment.

In keeping with our desire to constantly evolve and improve our service to our clients, we have recently invested in a new state-of-the-art CMM machine to replace our existing one. This new machine will significantly enhance the quality of our work and improve operational efficiencies.

The new QCT Quantum 4 CMM machine includes a hard anodised aluminium X axis bridge and Z spindle with air bearings. The machine is fitted with high precision Renishaw digital reader heads and scales. Superior Maxon motor gearbox units are used on all drive axis. The controller is QCT ACC3000 (USB) and a high-quality joystick unit ensures full multi-axis control.

What makes the QCT Quantum 4 stand out from the crowd is its QCT Inspect 3D-PRO Software. The systems graphics engine allows for quick calculations and the construction of complex features.

It has a comprehensive set of reporting tools for ease of analysis and the tracking of precise data. Reports are exportable in Excel and PDF formats and can be shared with colleagues and customers alike. Additional features include SPC Charts, Measurement MACROs and PIPE Measurement.

 

The QCT Quantum 4 also boasts the Renishaw Probe System. This is a fully motorised indexing head designed specifically for use on CNC CMMs. It provides 720 indexing positions in 7.5 degree indexing steps in both axes. The MCR20 rack allows TP20 modules to be automatically changed during a program. This probe system comes with a PH10T probe head with TP20 module and an MCR20 rack.

Quality Engineer, Andy Potter, said: “The QCT Quantum 4 will save inspection time and increase the scope and accuracy of our measuring facility.

It will also allow us to more easily compare both tooling and product to CAD. We will be able to create programs which will run automatically, as well as generate dimensional reports directly from the measured component.

The purchase of the QCT Quantum 4 reflects RP’s sustained commitment to investing in areas where we can return added value to our customers, and where we can stay ahead of our competitors.”

This machine will also give us greater scope for introducing additional quality engineering services. Our aim is to continue to expand our quality engineering offering so that we can provide a more comprehensive suite of solutions. Watch this space for more developments…

 

Quality Engineering is a very important part of our work here at RP Technologies. Our Quality Engineers are there to ensure that the expectations of our customers are met at all times. They closely monitor projects to ensure that the highest levels of precision and accuracy are achieved.

In recent times, we have made considerable investment in this area of our business. This investment includes employment of additional members of staff, renovation of the quality offices, and investment in high precision measuring tools and equipment.

In keeping with our desire to constantly evolve and improve our service to our clients, we have recently invested in a new state-of-the-art CMM machine to replace our existing one. This new machine will significantly enhance the quality of our work and improve operational efficiencies.

The new QCT Quantum 4 CMM machine includes a hard anodised aluminium X axis bridge and Z spindle with air bearings. The machine is fitted with high precision Renishaw digital reader heads and scales. Superior Maxon motor gearbox units are used on all drive axis. The controller is QCT ACC3000 (USB) and a high-quality joystick unit ensures full multi-axis control.

What makes the QCT Quantum 4 stand out from the crowd is its QCT Inspect 3D-PRO Software. The systems graphics engine allows for quick calculations and the construction of complex features.

It has a comprehensive set of reporting tools for ease of analysis and the tracking of precise data. Reports are exportable in Excel and PDF formats and can be shared with colleagues and customers alike. Additional features include SPC Charts, Measurement MACROs and PIPE Measurement.

The QCT Quantum 4 also boasts the Renishaw Probe System. This is a fully motorised indexing head designed specifically for use on CNC CMMs. It provides 720 indexing positions in 7.5 degree indexing steps in both axes. The MCR20 rack allows TP20 modules to be automatically changed during a program. This probe system comes with a PH10T probe head with TP20 module and an MCR20 rack.

Quality Engineer, Andy Potter, said: “The QCT Quantum 4 will save inspection time and increase the scope and accuracy of our measuring facility.

It will also allow us to more easily compare both tooling and product to CAD. We will be able to create programs which will run automatically, as well as generate dimensional reports directly from the measured component.

The purchase of the QCT Quantum 4 reflects RP’s sustained commitment to investing in areas where we can return added value to our customers, and where we can stay ahead of our competitors.”

This machine will also give us greater scope for introducing additional quality engineering services. Our aim is to continue to expand our quality engineering offering so that we can provide a more comprehensive suite of solutions. Watch this space for more developments…

action image
We can put your plans into action today

Award-winning aluminium tooling, plastic injection moulding, CNC machining, and rapid prototyping. We specialise in fast turnarounds of high quality components.

Want to know more? Get a quote