Knowledge Hub

Low Volume Manufacturing

What is Low Volume Manufacturing?

Low volume manufacturing is a production method used to create a small number of products, typically ranging from 1 to 1,000 units.

This process is often used for custom or niche products which do not require large-scale production.

Low volume manufacturing is cost-effective for small businesses, startups, or companies who want to test new products before scaling up production. It allows for design flexibility, customisation, and rapid prototyping.

What Technologies are Used for Low Volume Manufacturing?

3D Printing: Also known as additive manufacturing, this technology allows for the production of custom parts in small quantities with minimal setup time and costs.

CNC Machining: Computer Numerical Control (CNC) machines are used to produce parts by subtracting material from a block of raw material. This method is cost-effective for low volume production runs.

Injection Moulding: Injection moulding can also be used for low volume manufacturing with the right setup and tooling. Rapid tooling methods allow engineers to market-test products and troubleshoot the manufacturing process before committing to production tooling.

Laser Cutting: This technology is often used for cutting and engraving materials such as metal, plastic, and wood, making it ideal for low volume manufacturing projects.

Vacuum Casting: This method is used for producing small batches of parts using silicone moulds and polyurethane resins. It is a cost-effective way to replicate high-quality prototypes and small production runs.

What are the Production Scenarios for Low Volume Manufacturing?

Customised or specialised products: Low volume manufacturing is ideal for producing customised or specialised products that have unique specifications or features that are not easily mass-produced.

Prototyping and testing: Low volume manufacturing is often used for prototyping and testing new products before full-scale production. This allows for adjustments to be made quickly and cost-effectively.

Limited market demand: If there is limited market demand for a product, low volume manufacturing can be used to produce a smaller quantity of units to meet the specific needs of the target market.

Seasonal or niche products: Products which are only in demand during certain seasons or which cater to a niche market may be better suited to low volume manufacturing to avoid excess inventory and waste.

Early-stage startups: Startups may opt for low volume manufacturing to minimise the initial costs and risks associated with scaling up production. This will allow them to trial certain concepts and ideas before making a large financial commitment to the production process.

Aftermarket parts: Low volume manufacturing is agile and flexible, and it can be employed to create components on demand to improve the performance of existing products.

Spare parts: Low volume manufacturing can be utilised to produce replacement or spare parts for discontinued products. This is particularly useful if an OEM has stopped manufacturing a particular product which is still widely used by consumers. Innovative technologies such as 3D printing, which relies on the original CAD design, can be used.

Regulatory compliance: Products which require strict adherence to regulatory requirements or certifications may benefit from low volume manufacturing to ensure compliance. This mitigates the risk of producing non-compliant units in large quantities.

What are the Benefits of Low Volume Manufacturing?

Reduced upfront costs: Low volume manufacturing allows companies to produce smaller quantities without having to invest in expensive production equipment or high minimum order quantities (MOQs). This helps to reduce the initial capital expenditure required for production, making it more accessible for smaller businesses or startups.

Flexibility: Companies can easily modify product designs, incorporate customer feedback, or introduce new features during low volume manufacturing processes. This flexibility enables businesses to quickly respond to market demands.

Customisation: Low volume manufacturing is ideal for the production of bespoke or custom products which meet the specific needs and requirements of customers.

Faster time to market: With low volume manufacturing, companies can bring products to market more rapidly. As the production volume is smaller, the turnaround time for manufacturing is shorter. This speed-to-market advantage is particularly beneficial for businesses operating in fast-moving industries, or for products which have short lifecycles.

Reduced inventory risks: Producing in smaller quantities helps to minimise the risk of excess inventory. This is especially important for industries where demand is uncertain or rapidly changing. Low volume manufacturing allows companies to produce products based on current demand, reducing the need for excessive stock and associated storage costs.

Lower risk experimentation: Low volume manufacturing provides an opportunity for companies to test new ideas, innovations, or prototypes. This allows businesses to analyse product performance and refine designs without incurring substantial manufacturing costs.

Cost-effective for niche markets: Low volume manufacturing is particularly favourable for niche markets with limited demand. Customisation options and lower production costs allow companies to cater to specific customer needs without compromising profitability.

Reduced waste and sustainability: Low volume manufacturing helps to minimise waste and excess materials by producing fewer units. Such sustainable production practices are good for the environment and have become increasingly important to consumers and regulators.

Utilisation of advanced technologies: Low volume manufacturers often leverage advanced manufacturing technologies, such as 3D printing and CNC machining, to efficiently produce small quantities of products with high precision and quality.

Which Industries Typically Employ Low Volume Manufacturing?

Aerospace and Defence: Due to the complex and unique nature of components required in aerospace and defence applications, low volume manufacturing is often preferred to produce specialised parts and equipment on a smaller scale.

Automotive: The automotive industry utilises low volume manufacturing for prototype development, customisations, and limited production runs of specialty vehicles or parts.

Medical Devices: Many medical devices require precision engineering and customisation, making low volume manufacturing a cost-effective solution for producing small batches of specialised equipment. They also require stringent testing before rolling out full production.

Electronics: The electronics industry often requires low volume manufacturing for producing prototypes, custom components, and small batches of specialised products.

Consumer Goods: Consumer goods companies use low volume manufacturing to produce limited edition items which do not have mass-market appeal but cater to a niche audience.

Knowledge Hub

The Manufacturing Supply Chain

A supply chain is a network of individuals and companies who are involved in a product’s lifecycle. A product’s lifecycle refers to the period from conception all the way through to final delivery.

In manufacturing terms, the supply chain is the process of converting raw materials or components into fully assembled working products. These products can then be sold to customers.

There are many different types of customers involved in the manufacturing supply chain. These include materials suppliers, manufacturers, product designers and end users.

The UK manufacturing supply chain has become an increasingly challenging environment for companies. Small-medium sized enterprises have been especially squeezed. The challenges include costs, scarcity of materials, increased competition, and geopolitical turbulence.

This article will examine the supply chain from the perspective of the manufacturer. We will explore the challenges, opportunities, and benefits which exist for modern companies.

Supply Chain Challenges in the Manufacturing Sector

Raw Material Sourcing: Fluctuations in commodity prices, poor availability, and shipping delays have made the sourcing of raw materials extremely challenging for manufacturers.

Production Delays: Delays in production due to machine breakdowns, labour shortages, or other issues can disrupt the supply chain. This can lead to missed deadlines and increased costs.

Inventory Management: Balancing inventory levels to meet demand without overstocking or understocking can be a challenge for manufacturers. Poor inventory management can lead to excess costs and product obsolescence.

Transportation Costs: Rising transportation costs, including fuel prices and shipping rates, can impact upon the efficiency and cost-effectiveness of the supply chain.

Quality Control: Ensuring product quality throughout the manufacturing process is essential for meeting customer expectations and preventing costly recalls or returns.

Globalisation: Manufacturers who source materials or sell products internationally face many challenges. These include currency fluctuations, tariffs, and trade regulations. Such factors can have a domino effect on the wider supply chain.

Sustainability: Increasing pressure to operate sustainably can create challenges for companies in terms of sourcing environmentally friendly materials and minimising waste.

Cybersecurity: As manufacturers adopt digital technologies and connect their supply chain systems online, they may become more vulnerable to cybersecurity threats. Such threats include data breaches and ransomware attacks. Protecting sensitive information and ensuring the security of the supply chain are big challenges for manufacturers.

Increased Utility Costs: Manufacturers often rely on large workforces, heavy duty machinery, and large production facilities to carry out their work. The rising costs of gas, electricity, and heating have created a squeeze on profit margins for many companies.

How Can Companies Successfully Manage the Manufacturing Supply Chain?

Companies can successfully navigate and manage the manufacturing supply chain by implementing the following strategies:

Establish Strong Supplier Relationships: Building strong relationships with suppliers can help to ensure a steady supply of materials and components. Effective communication, transparency, and collaboration with suppliers can help to reduce lead times, improve quality, and foster innovation.

Implement Supply Chain Visibility and Transparency: Utilise technology such as supply chain management software to gain real-time visibility into inventory levels, production status, and transportation. This can help identify potential bottlenecks, which in turn will help manufacturers to anticipate disruptions, and to make more informed decisions.

Diversify Suppliers and Sources: Relying on multiple suppliers can help to mitigate some of the risks involved. These include supply shortages, price fluctuations, and geopolitical instability. Companies should regularly assess their supplier network and consider alternative options.

Optimise Production Processes: Implement lean manufacturing principles, just-in-time inventory management, and other efficiency-improving techniques. These techniques will minimise waste, reduce lead times, and improve overall productivity. Continuous process improvement and automation can also help to streamline operations.

Invest in Workforce Training and Development: A skilled and knowledgeable workforce is crucial for managing a complex manufacturing supply chain. Companies should invest in training programs to enhance employee skills and expertise in supply chain management.

Monitor and Measure Performance Metrics: Establish key performance indicators (KPIs) to track supply chain performance, such as on-time delivery, inventory turnover, and cost efficiency. Regularly analyse data and metrics to identify areas for improvement and to optimise supply chain operations.

Proactively Manage Risks: Identify potential risks and develop strategies to mitigate them. These strategies may include developing contingency plans for supply disruptions, implementing risk management protocols, and conducting regular risk assessments.

By implementing these strategies and continuously improving supply chain management practices, companies can navigate the complexities of the manufacturing supply chain. This will enable them to achieve operational excellence.

What Are the Opportunities for Companies in the Manufacturing Supply Chain?

Enhanced Efficiency and Productivity: Companies in the manufacturing supply chain can improve their efficiency and productivity by streamlining processes, utilising advanced technologies, and adopting best practices. This can reduce costs, maximise output, and enhance their competitiveness in the market.

Innovation and Product Development: Companies can innovate and develop new products to meet changing customer demands and market trends. By investing in research and development, they can create unique products which provide competitive differentiation and attract new customers.

Global Expansion: Companies in the manufacturing supply chain can expand their global operations and tap into new markets. By establishing partnerships and collaborations with international partners, they can increase their market reach and grow their business.

Sustainability and Corporate Social Responsibility: With increasing focus on sustainability and corporate social responsibility, companies can seize the opportunity to adopt eco-friendly practices, reduce their carbon footprint, and contribute to a more sustainable future. This can attract customers and investors, leading to long-term success and growth.

What are the Benefits to Manufacturers of Being Part of a Supply Chain?

Increased Efficiency: Being part of a supply chain allows manufacturers to streamline their operations and reduce waste, ultimately improving their overall efficiency.

Cost Savings: By working closely with suppliers and distributors, manufacturers can negotiate better pricing on raw materials and transportation, leading to cost savings.

Improved Quality Control: Being part of a supply chain enables manufacturers to closely monitor and control the quality of their products throughout the production process.

Enhanced Flexibility: Collaborating with suppliers and distributors allows manufacturers to respond quickly to changing market demands. Production schedules can also be adjusted flexibly and accordingly.

Access to New Markets: Supply chains provide manufacturers with access to new markets and distribution channels. This helps them to expand their customer bases and drive sales.

Risk Mitigation: By diversifying their supplier bases and increasing collaboration with other partners in the supply chain, manufacturers can reduce their exposure to all kinds of risks. Such risks include unforeseen disruptions in the supply chain or sudden fluctuations in demand.

Knowledge Hub

Reverse Engineering

What is Reverse Engineering in Manufacturing?

Reverse engineering in manufacturing is the process of analysing the design and structure of a manufactured product to understand its construction and functionality.

It is a deductive process which often involves disassembling the product, studying its components and materials, and figuring out how it functions.

Reverse engineering can be used to gain valuable insights into the manufacturing process. It is also employed to improve upon existing products, create compatible parts, and investigate competitor products for market advantage. It may involve the use of various tools such as 3D scanning, computer-aided design (CAD), and computer numerical control (CNC) machining.

How Does Reverse Engineering Help in Injection Moulding?

Reverse engineering assists in the injection moulding process in the following ways:

Mould creation: Reverse engineering assists in creating accurate moulds by capturing the intricate details, dimensions, and specifications of an existing part. This precision helps to produce moulds which replicate the original product.

Product analysis and improvement: Reverse engineering allows manufacturers to enhance existing products by identifying design flaws or weaknesses. By analysing and understanding the construction and materials used in specific parts, engineers can suggest modifications to improve performance, durability, or manufacturability.

Cost/time benefits: Reverse engineering can save time and costs during the product development process. Instead of starting from scratch, engineers can study existing products and can understand more quickly how to create similar components with improved features.

Obsolescence management: When a component or product becomes obsolete due to discontinued production or unavailable spare parts, manufacturers can reverse engineer the part to replicate it, ensuring the continued production of the product.

Competitor analysis: By deconstructing and analysing competitor products, manufacturers can gather valuable feedback, and can innovate based upon their findings.

Reverse Engineering and Injection Moulding – The Step-by-Step Process

  1. Part acquisition: Obtain a sample of the desired part that needs to be reverse engineered. This can be an existing plastic part or a prototype.
  1. 3D scanning: Use a 3D scanner to capture the part’s geometry/dimensions. The scanner can be contact or non-contact, depending on the complexity and fragility of the part.
  1. Point cloud generation: The 3D scanner creates a point cloud data set, which is a collection of millions of 3D points that represent the surface of the part. This point cloud can be further processed to obtain a more usable format.
  1. CAD modelling: Import the point cloud data into a Computer-Aided Design (CAD) software to convert it into a 3D CAD model. The CAD model should accurately represent the geometry and dimensions of the original part.
  1. Cleanup and feature extraction: Refine the CAD model by removing any noise or errors from the scanned data. Identify and extract key features, such as holes, curves, fillets, and other details that are essential for the injection moulding process.
  1. Design modification (if required): The 3D CAD model is modified or optimised to meet specific requirements, such as reducing weight or enhancing manufacturability.
  1. Mould design: Using the CAD model, the mould design should be created to produce the reverse-engineered part. The mould design should consider factors like parting line, draft angles, gate locations, ejection system, and cooling channels.
  1. CAM programming: Generate the Computer-Aided Manufacturing (CAM) program that defines the toolpath for the CNC machines used to manufacture the injection mould. This program ensures that the mould is machined accurately and precisely.
  1. Mould manufacturing: Use the CAM program to machine the injection mould from suitable materials, such as steel or aluminium. The mould should be fabricated with high precision to ensure proper functioning and durability.
  1. Part production: Once the injection mould is ready, it can be used to produce the plastic parts through the injection moulding process. This involves melting plastic material, injecting it into the mould cavity, and allowing it to cool and solidify before ejecting the finished part.
  1. Quality control: Inspect the reverse-engineered parts to ensure they meet the required specifications and quality standards. This may involve dimensional measurements, visual inspection, and mechanical or functional testing.

What are the Challenges of Reverse Engineering in Injection Moulding?

Lack of original design information: It can be particularly challenging to accurately recreate a product without the original design specifications, dimensions, and material compositions.

Complex geometries: It may be difficult to reproduce injection moulded parts with complex geometries through reverse engineering. It may not be possible to achieve dimensional accuracy and to replicate intricate features.

Manufacturing processes: Parameters such as temperature, pressure, cooling rates, and tooling design can significantly affect the final product’s quality. Recreating these specific manufacturing processes accurately can be a complex task.

Cost and time constraints: Re-engineering a product from scratch can require significant investments in terms of time, resources, and expertise. It may involve the use of specialised equipment and software, as well as extensive testing and validation.

Addressing these challenges requires tremendous technical expertise. It also depends upon access to advanced tools and equipment, and a thorough understanding of the injection moulding process.

It is essential to have a multidisciplinary team that includes engineers, material specialists, and skilled technicians to overcome these manufacturing challenges.

Factors Affecting the Reverse Engineering Process

Material Properties: The properties of the original material can impact the reverse engineering process. The material’s melting temperature, shrinkage, and flowability must be considered when selecting a suitable material for the reverse-engineered mould.

Mould Design: The mould design of the original part can influence the reverse engineering process. The complexity, number of parts, wall thickness, and surface finish of the original part must be carefully analysed to create an accurate mould design.

Equipment and Tools: The availability and precision of the equipment/tools used in reverse engineering can greatly impact the success of the mould creation. These include advanced scanning technology, computer-aided design (CAD) software, and CNC milling machines.

Skill and Expertise: The skill and expertise of the engineers can significantly affect the reverse engineering process. Expert knowledge of injection moulding, CAD software, and mould making techniques is necessary to ensure accurate replication of the original part.

Time and Cost: The complexity of the part, availability of resources, and the urgency of the project can impact the timeline and budget for reverse engineering.

Intellectual Property: Reverse engineering a part may create legal or ethical issues, especially if the part is protected by intellectual property rights. Companies must adhere to legal requirements and obtain permissions before engaging in reverse engineering activities.

Knowledge Hub

Design for Manufacturing (DFM)

What is Design for Manufacturing (DFM)?

Design for Manufacturing (DFM) is the process of designing a product in a way that optimises its manufacturing efficiency and quality.

The aim is to create a design that can be easily and cost-effectively manufactured, assembled, and serviced.

DFM takes into consideration variables such as materials, production techniques, tooling, equipment, and resources.

By considering manufacturing processes early in the design phase, DFM seeks to reduce or eliminate potential issues and increase overall production efficiencies. This helps to minimise costs, shorten lead times, and improve product functionality.

DFM involves collaboration between designers, engineers, and manufacturers to ensure that the design meets all manufacturing requirements. It is also essential to ensure that the design is suitable for mass production.

This may involve making design modifications, as well as identifying the appropriate materials and standardising components. Care must be taken to minimise the number of parts and to ensure ease of assembly.

What is the Process for Design for Manufacturing (DFM)?

The Design for Manufacturing (DFM) process will depend on the product, its requirements, and its intended application.

Here are some of the typical steps in the DFM process:

  1. Understanding customer requirements: The first step is to understand the customer’s requirements for the product. This includes understanding its function, performance, and any specific design constraints.
  1. Design concept development: The design concept will then be developed and will include initial sketches, visualisations, or 3D models to capture the look and feel of the product.
  1. Design analysis: Various design analyses are conducted to evaluate the performance of the product. This may include stress analysis, tolerance analysis, finite element analysis (FEA), or any other relevant analysis to ensure the design meets the required specifications.
  1. Design optimisation: Based on the analysis results, the design is then optimised. This may involve making changes to the product geometry, materials, or manufacturing processes.
  1. Design for manufacturability assessment: This involves analysing how easily the design can be manufactured using available manufacturing processes, equipment, and materials. The goal is to identify any potential manufacturing issues, such as complex geometries or difficult-to-manufacture features. This is important so that the necessary design modifications can be made.
  1. Design validation: Once the design is optimised and assessed for manufacturability, it is validated through prototype testing. This may involve creating physical prototypes or using computer simulations to test the product’s performance and functionality.
  1. Iterative design improvements: Based on the prototype testing results, any necessary design improvements or modifications are made. This iterative process continues until the design meets all the required criteria.
  1. Documentation preparation: Once the design is finalised, detailed documentation is prepared. This includes manufacturing drawings, specifications, bills of materials (BOM), and assembly instructions. These documents provide all the necessary information for the manufacturing team to produce the product.
  1. Manufacturing process planning: The manufacturing team develops a detailed plan for manufacturing the product. This includes selecting the appropriate manufacturing processes, equipment, and materials. The plan will also determine the production schedule and quality control measures.
  1. Production: The product is manufactured by following the manufacturing process plan. This may involve various stages, such as material procurement, machining or fabrication, assembly, and quality assurance.
  1. Continuous improvement: Feedback is collected from the manufacturing team to identify any issues or opportunities for improvement. These insights are used to refine the design, manufacturing, and quality control processes for future iterations of the product.

The Benefits of Design for Manufacturing (DFM)

Cost reduction: By simplifying the manufacturing process, companies can achieve cost savings in labour, materials, tooling, and equipment.

Faster time to market: With DFM, products can be designed to be manufactured more efficiently, resulting in reduced lead times. The elimination of design flaws, manufacturability issues, or the need for multiple design iterations helps to speed up the overall process.

Improved product quality: Designing products with manufacturing in mind ensures that potential issues such as part failures, assembly problems, or quality defects are addressed early in the design phase. DFM maximises the likelihood of creating a product that meets quality standards and performs reliably.

Enhanced product functionality: By considering the manufacturing process beforehand, designers can take advantage of manufacturing techniques, materials, and production capabilities. This will help to improve the functionality, durability, and performance of the product.

Simplified maintenance and repair: Products designed with DFM principles are often easier to assemble, disassemble, and repair. This reduces downtime and the costs associated with maintenance or repairs, as well as improving user experience.

Increased production scalability: DFM ensures that a product’s design can be easily scaled up or down for larger or smaller production volumes. By minimising design constraints and manufacturing complexities, companies can respond more effectively to changing market demands. This means they can ramp up production quickly when required.

Improved supply chain management: DFM can lead to better collaboration and communication between design teams and manufacturing partners. By involving manufacturers early in the design process, they can provide input on feasibility, potential issues, and suggestions for improvement. This collaboration streamlines the supply chain, reduces the risk of delays or production bottlenecks, and fosters stronger partnerships.

Examples of Design for Manufacturing (DFM)

Simplified assembly processes: Designing products with easy-to-follow assembly instructions and minimising the number of components involved can greatly increase efficiency.

Standardised parts: Standardised parts can reduce costs/lead times by allowing manufacturers to use existing resources and minimise the need for custom manufacturing.

Designing for scalability: Creating designs that can easily scale up or down in production volume helps manufacturers to efficiently adjust to changing market demands.

Material selection: Selecting materials that are readily available, cost-effective, and easy to work with can simplify the manufacturing process and reduce production costs.

Minimising waste: Designing products with minimal material waste can lead to cost savings during manufacturing and will contribute to sustainability efforts.

Designing for automation: Incorporating features that facilitate automation, such as the use of robotics or assembly line equipment, can improve efficiency and reduce labour costs.

Designing for inspection and testing: Incorporating features that facilitate quality control inspections and product testing can help manufacturers to ensure that products meet the required standards before leaving the production line.

Ergonomics and user-friendly design: Designing products that are ergonomic and intuitive to use can improve manufacturing efficiency by reducing mistakes and assembly time.

Designing for cost-effective packaging and shipping: Considering packaging and shipping requirements during the design phase is essential. This will minimise transportation costs, protect the product during transit, and reduce packaging waste.

Designing for maintenance and repair: Designing products which are easy to maintain and repair can reduce downtime and costs associated with servicing and troubleshooting.

Knowledge Hub

In Focus: What is CMM Inspection?

In the next instalment of our ‘In Focus’ series, we look at CMM inspection and measurement, exploring its role in the manufacturing process and examining how product designers and manufacturers can benefit from it.

The Role of CMM Inspection in Manufacturing

CMM Inspection is the process of monitoring and measuring the dimensional accuracy of manufactured products.

It is an essential part of the product development and manufacturing process, as it helps to ensure that all components meet their design specifications. Meeting these specifications is crucial to ensure that products fulfil their end application requirements.

What is a CMM and What Does it Do?

CMM stands for Coordinate Measuring Machine. It is a device used in the manufacturing industry to measure the dimensions and geometrical characteristics of a physical object.

The CMM inspection and measurement process involves using a probe attached to a moving arm that measures the object’s surface by making contact with specific points on the object.

These measurement points are captured by the CMM software, which generates a 3D representation of the object’s geometry.

The measurements can be compared to a CAD (Computer-Aided Design) model, allowing for accurate evaluation of dimensions, form, and positional tolerances.

How Does CMM Inspection and Measurement Aid the Manufacturing Process?

CMM inspection and measurement supports the manufacturing and quality engineering processes in several ways:

  1. Quality Control: CMM inspection ensures that manufactured products meet the desired specifications. By comparing the measured dimensions to the CAD model, any deviations or non-conformities can be identified, allowing for corrective actions to be taken before the product reaches the customer.
  1. Process Validation: CMM measurement is used to validate the effectiveness of manufacturing processes. By measuring the dimensions of sample parts throughout the production process, engineers can determine if the process is consistent and capable of producing parts within the desired specifications.
  1. Statistical Analysis: CMM inspection data can be used for statistical analysis to assess the capability of the manufacturing process. Statistical techniques such as Six Sigma can be employed to identify and eliminate variations, leading to increased process stability and reduced defects.
  1. Reverse Engineering: CMM inspection plays a crucial role in reverse engineering. By measuring the dimensions and geometrical characteristics of existing parts, engineers can create CAD models and identify any design improvements or modifications required for replication or enhancement of the existing product.
  1. Documentation: CMM inspection provides accurate and traceable measurement data. This data can be used as evidence of compliance with quality standards and customer requirements. It also serves as a record of the product’s as-built condition and can be used for troubleshooting or future reference.

Overall, CMM inspection and measurement help to ensure the quality and accuracy of manufactured products, reducing defects, improving process efficiency, and enhancing customer satisfaction.

How Do Product Developers Benefit from CMM Inspection?

CMM inspection services are required when you need accurate and detailed measurements of a physical object or part. This is particularly important in manufacturing, engineering, and quality control processes where precise measurements are critical.

CMM (Coordinate Measuring Machine) inspection services use advanced technology to capture the coordinates and dimensions of an object, allowing for thorough analysis, comparison with CAD models or specifications, and identification of deviations or defects.

Let’s look at some of the key benefits of CMM inspection and measurement to our customers:

Production optimisation: By regularly inspecting parts during the production process, manufacturers can identify and rectify any issues early on, thereby reducing waste, maintaining consistent quality, and optimising production efficiency.

Reverse engineering: CMM inspection is used to gather accurate measurements of existing objects or parts to create a CAD model or replicate them. This is useful when reproducing obsolete or custom-made parts, or when conducting product improvement or redesign processes.

Verification and validation: CMM inspection can validate the accuracy and integrity of prototypes, new designs, or modifications before mass production. It ensures that all required dimensions and specifications are met, reducing the risk of costly errors or failures.

Root cause analysis: When defects or failures occur, CMM inspection can help identify the root causes by accurately measuring affected parts and comparing them to design specifications. This enables organizations to address the underlying issues and prevent future occurrences.

Industries Which Benefit from CMM Inspection Services

The industries which benefit the most from CMM (Coordinate Measuring Machine) inspection and measurement include:

Automotive Industry: CMM inspection is crucial for measuring and inspecting complex components and ensuring their adherence to quality standards. It is used in both automotive manufacturing and during vehicle maintenance and repair.

Aerospace Industry: CMM machines are extensively used in the aerospace industry to measure and inspect critical components like turbine blades, airframes, and engine parts. The high precision and accuracy of CMM systems ensure compliance with strict quality and safety standards.

Medical Device Industry: CMM services are important in the production of medical devices, where precision and accuracy are critical. It is used to measure and inspect implants, prosthetics, surgical instruments, and other medical equipment to ensure proper fit and functionality.

Defence and Military Industry: CMM inspection is essential in defence and military applications where the accuracy and reliability of components is essential. It is used in the manufacture and maintenance of weapons, vehicles, and surveillance equipment.

Energy Industry: CMM inspection plays a significant role in the energy sector. It is used to measure and inspect critical parts such as pipelines and energy-efficient components.

Overall, any industry that requires precise dimensional measurements and quality assurance can benefit from CMM inspection and measurement. The ability of CMM machines to accurately capture data makes them invaluable in ensuring product quality and compliance with industry standards.

Find Out More

In March 2024, RP Technologies launched a new sub-contract CMM inspection and measurement service.

This service provides metrology, CMM measurement, quality inspection, and quality engineering solutions to customers whose parts have been manufactured by third party suppliers.

More information on this new service can be found on our CMM Inspection page.

Knowledge Hub

Expansion Tanks

What are Expansion Tanks?

Expansion tanks are devices used in heating systems, plumbing systems, and water supply systems to control the expansion and contraction of fluids during temperature variations. They are typically attached to water heaters, boilers, or hot water storage tanks.

Expansion tanks consist of a closed vessel with a diaphragm or a bladder inside, separating the water and air compartments. When the water in the system heats up, it expands, putting excess pressure on the pipes, fixtures, and other components. The expansion tank absorbs this excess pressure by allowing the water to expand into the air compartment, compressing the air inside.

As the water cools down and contracts, the expansion tank releases the stored water back into the system. This helps to maintain a more constant pressure within the system, preventing damage to pipes, valves, and other equipment.

What are the Common Applications of Expansion Tanks?

Expansion tanks are commonly used in the following applications:

Heating systems: Expansion tanks are essential in closed loop heating systems, including boilers and hydronic heating systems. They accommodate the expansion and contraction of the heating fluid as it heats up and cools down, preventing damage to the system and maintaining the correct pressure.

Hot water systems: In domestic and commercial hot water systems, expansion tanks are employed to compensate for the increase in water volume when heated. They help maintain optimum pressure, prevent excessive pressure buildup, and prevent water leaks or damage to plumbing fixtures.

HVAC systems: Heating, ventilation, and air conditioning (HVAC) systems utilise expansion tanks to regulate the pressure and volume of the refrigerant or cooling fluid. This ensures efficient operation, prevents system failures, and extends the lifespan of the HVAC equipment.

Solar water heating systems: Expansion tanks are often integrated into solar water heating systems to compensate for the expansion of the heated water. These tanks maintain the correct pressure, prevent system failures, and protect against potential leaks or ruptures.

Plumbing systems: Expansion tanks are employed in plumbing systems to absorb excess pressure fluctuations caused by water hammering, thermal expansion, or pressure surges. They help prevent burst pipes, leakage, or fixture damage.

Fire suppression systems: Expansion tanks are used in fire suppression systems, particularly in pre-action sprinkler systems, where compressed air is stored to prevent false alarms due to minor pressure fluctuations. These tanks also ensure that the correct pressure is maintained for prompt and reliable operation during actual emergencies.

Industrial applications: Expansion tanks find applications in various industrial processes that involve thermal fluid systems, such as chemical processing plants, power plants, refineries, or manufacturing facilities. They help to regulate fluid pressure, accommodate thermal expansion, and protect equipment from failure.

How are Expansion Tanks Used in the Automotive Sector?

In the automotive sector, expansion tanks are commonly used in cooling systems to ensure efficient and safe operation of the engine. Expansion tanks perform the following functions:

Cooling System Function: The primary purpose of an expansion tank in an automotive cooling system is to compensate for the expansion and contraction of coolant as it heats up and cools down during engine operation. The expansion tank acts as a reservoir for excess coolant, allowing it to expand freely without causing any damage to the cooling system.

Coolant Recovery: Expansion tanks are also designed to collect coolant that has overflowed from the radiator due to thermal expansion. When the engine is running, the coolant heats up, creating pressure within the cooling system. If the pressure exceeds the radiator cap’s rated pressure, the excess coolant is forced into the expansion tank. As the engine cools down, the coolant contracts, creating a vacuum in the cooling system, which draws the coolant back from the expansion tank into the radiator.

Maintaining Optimum Coolant Level: The expansion tank also helps in maintaining the optimum coolant level in the cooling system. It is designed with a minimum and maximum level marker to indicate the acceptable range of coolant volume. By checking the expansion tank’s level regularly, automotive technicians can ensure that there is enough coolant in the system for effective heat dissipation and prevention of overheating.

Coolant Reservoir: In some automotive systems, the expansion tank also acts as a coolant reservoir. In such cases, the expansion tank is connected to the bottom of the radiator, allowing excess coolant to flow into the tank. This stored coolant is then used to refill the radiator, ensuring that the cooling system remains adequately filled and operational.

How are Expansion Tanks Made for Automobile Engines?

Expansion tanks for automobile engines are typically made from durable materials such as plastic or aluminium. The manufacturing process involves several steps:

  1. Material selection: The appropriate material is selected based on factors such as strength, heat resistance, and cost-effectiveness. Plastic tanks are commonly used due to their lightweight nature, cost efficiency, and corrosion resistance.
  1. Mould creation: A mould is created based on the desired shape and design of the expansion tank. This mould will be used to shape the tank during the manufacturing process.
  1. Plastic injection moulding: The mould is filled with molten plastic material through an injection moulding process. The plastic is injected into the mould at high pressure, ensuring its complete filling and precise reproduction of the mould shape.
  1. Cooling and solidification: After the plastic is injected into the mould, it is left to cool and solidify. This allows the plastic to take its final form and harden.
  1. Trimming and finishing: Once the tank has solidified, it is removed from the mould. Any excess plastic is trimmed off, and the tank is smoothened out to achieve the desired finish.
  1. Fittings and connections: The expansion tank is then equipped with appropriate fittings and connections, such as inlet and outlet hoses, caps, and mounting brackets. These components are typically made separately and are attached to the tank using various methods, including welding, sealing, or with O-rings or gaskets.
  1. Quality control: The finished expansion tanks undergo stringent quality control checks to ensure they meet the required specifications and standards. This includes testing for leakages, durability, and compatibility with other engine components.

Once the expansion tanks pass the quality control inspection tests, they are ready to be installed in car engines, providing the necessary space for the expansion and contraction of coolant as the engine temperature fluctuates.

Knowledge Hub

Bridge Tooling

What is Bridge Tooling?

Bridge tooling is the process of creating temporary moulds or tools to produce small volumes of parts before the final production tooling is ready. It is a cost-effective and efficient method of bridging the gap between product development and full-scale production, hence why it is called ‘bridge tooling.’

It is the stage in the product development process between prototyping and production.

Bridge tooling is employed in circumstances when the final mass production tooling is still being designed or manufactured, but there is a need to produce a small batch of parts for testing, market validation, or short-term production requirements.

Less expensive materials are often utilised, such as aluminium or epoxy.

This temporary tooling mimics the intended part design and dimensions closely. Once final production tooling is ready, it replaces the bridge tooling, and mass production can begin.

How are Bridge Tools Manufactured?

To manufacture bridge tools in the toolmaking process, the following steps are typically followed:

  1. Design and Planning: The toolmakers work closely with engineers and designers to create a detailed design of the bridge tool. This includes understanding the specific requirements, dimensions, and functionality of the tool.
  1. Material Selection: Choosing the appropriate material for the bridge tool is important to ensure durability and performance. Typical materials include aluminium and various alloys, depending on the specification required, such as strength, corrosion resistance, and cost.
  1. Machining: The selected material is cut and shaped using various machining techniques like milling, turning, drilling, and grinding. Computer Numerical Control (CNC) machines are often used for precision and accuracy in these operations.
  1. Heat Treatment: Depending on the material and requirements, heat treatment processes like annealing, hardening, tempering, or case hardening may be applied to improve the mechanical properties of the tool, such as hardness, toughness, and wear resistance.
  1. Surface Finishing: Once the desired shape is achieved, the bridge tool is subjected to surface finishing processes such as polishing, buffing, or grinding. This helps to remove any surface imperfections, improve aesthetics, and enhance functionality.
  1. Assembly: If the bridge tool consists of multiple components, they are assembled together using techniques like welding, brazing, or fastening, to ensure all parts fit precisely.
  1. Inspection and Quality Control: The manufactured bridge tool undergoes thorough inspection and quality control processes to check for dimensional accuracy, functionality, and durability. This may involve the use of measurement tools such as coordinate measuring machines (CMM) or optical measurement equipment.
  1. Modifications and Adjustments: Bridge tools are tested to ensure that they meet the specified requirements. If tooling modifications are required, they are made at this stage.

It is important to note that the specific manufacturing process can vary depending on several factors, such as the complexity of the bridge tool and the quantity of parts required.

What are the Main Benefits of Bridge Tooling?

The main benefits of bridge tooling include:

  1. Cost-effectiveness: Bridge tooling is less expensive compared to permanent tooling. It allows for limited quantities of parts at a lower cost.
  1. Quick turnaround: Bridge tooling enables rapid production by reducing the design and manufacturing time required for permanent tooling.
  1. Iterative design: Design improvements can be made easily during the development phase, prior to investment in permanent tooling.
  1. Validation of design: Bridge tooling provides an opportunity to evaluate functional prototypes to ensure the design meets the performance criteria before mass production.
  1. Low volume production: Bridge tooling is ideal for producing small to medium quantities of parts, bridging the gap between prototyping and mass production.
  1. Material selection flexibility: Bridge tooling allows for the production of parts in various materials, including plastics, metals, and composites.
  1. Improved time to market: By enabling faster production and prototype validation, bridge tooling can expedite the product development cycle, thereby reducing time to market.

Why Use Aluminium Instead of Steel for Bridge Tooling?

There are several reasons why aluminium is preferred to steel for bridge tooling:

  1. Weight: Aluminium is much lighter than steel. This makes it easier to handle and transport during the tooling process. It also reduces the load on the entire structure, making it more efficient and cost-effective.
  1. Machinability: Aluminium is relatively softer and has better machinability compared to steel. It can be easily shaped, cut, and machined to create complex bridge tooling designs. This saves time and cost during the manufacturing process.
  1. Durability: Despite being lighter, aluminium has excellent strength-to-weight ratio. It can withstand heavy loads and forces, making it a durable material for bridge tooling. Aluminium also has good resistance to corrosion, ensuring a longer lifespan.
  1. Thermal Conductivity: Aluminium has high thermal conductivity compared to steel. This property helps in efficient heat transfer during the tooling process, allowing for faster cooling and quicker production times.
  1. Cost: Aluminium is generally less expensive compared to steel, making it a cost-effective choice for bridge tooling. It requires lower maintenance costs and can be recycled, contributing to sustainability and cost savings in the long run.
  1. Flexibility: Aluminium is a highly flexible material, allowing for various design possibilities and customisation options. It can be easily formed into different shapes and sizes, providing flexibility in bridge tooling designs without compromising structural integrity.

Overall, the choice between aluminium and steel for bridge tooling depends on the specific requirements of the project, including factors such as load-bearing capacity, design constraints, and environmental conditions.

Bridge Tooling by Industry

Bridge tooling is most typically suited to industries that require rapid prototyping and short production runs. Industries which frequently benefit from bridge tooling include:

  1. Automotive: Bridge tooling is essential during the development of new vehicle models or when making changes to existing ones. It allows for the production of prototypes, testing parts, and limited production volumes before finalising the tooling design.
  1. Consumer Electronics: With evolving technology, consumer electronics companies often require quick turnaround times for small production runs. Bridge tooling enables them to produce refined prototypes and test them for functionality and aesthetics.
  1. Aerospace and Defence: Aerospace and defence rely on rapid prototyping and low-volume production to evaluate designs and ensure high performance and safety standards.
  1. Medical Devices: Medical device manufacturers often require prototyping and low volume manufacturing due to regulatory approval processes and market demand. Bridge tooling allows for the rapid production of medical devices for testing and early market entry.
  1. Industrial Equipment: Companies that develop industrial machinery and equipment may utilise bridge tooling to validate their designs before investing in full-scale manufacturing. It helps to ensure that the final product meets performance and durability specifications.
  1. Product Design and Development: Bridge tooling also finds applications in various product design and development firms as part of the trialling process during new product development.

Knowledge Hub

Tooling Modifications

What are Tooling Modifications?

Tooling modifications are changes or adjustments made to the tools used in manufacturing processes.

These modifications may involve altering the design, composition, or configuration of the tools to improve their performance, durability, or efficiency.

Existing tools often need to be adapted or customised to fit specific production requirements or to accommodate changes in the manufacturing process.

Tooling modifications ultimately help to optimize tooling performance, minimize defects, reduce downtime, and increase productivity in the manufacturing industry.

How are Tooling Modifications Carried Out?

Tooling modifications are carried out through a series of steps that involve analysis, planning, implementation, and validation. Here is a general outline of the process:

  1. Analysis: The need for tooling modifications is identified through observation, analysis of process performance, feedback from users, or changes in requirements. This step involves examining the existing tooling setup, understanding the limitations or areas for improvement, and determining the goals for modification.
  1. Planning: Based on the analysis, a plan is developed to define the scope, objectives, timeline, and resources required for the modification. This includes identifying the specific modifications needed, evaluating their feasibility, and estimating the costs involved.
  1. Design: The design of the tooling components is the next step. This may involve consulting with design engineers, technicians, and other relevant stakeholders to come up with the best solution. Computer-aided design (CAD) software or other modelling tools may be used to create detailed designs.
  1. Manufacturing: Once the design is finalised, the modified tooling components are manufactured. This can involve machining, casting, or forging. Precision and accuracy are crucial to ensure compatibility and functionality with the existing tooling setup.
  1. Assembly: The modified components are integrated into the existing tooling system. This can involve disassembling the existing tooling, replacing, or modifying specific parts, and reassembling the tooling setup. The assembly process must be carried out meticulously to maintain proper alignment, tolerances, and functionality.
  1. Testing and Validation: After the modifications are implemented, the tooling setup undergoes rigorous testing and validation. This ensures that the modifications meet the desired objectives, function properly, and do not adversely affect the overall performance of the tooling system. Testing can involve simulated operation, trial runs, or real-world evaluation.
  1. Implementation and Training: Once the modified tooling setup is successfully tested and validated, it is implemented in the production process.
  1. Continuous Improvement: Tooling modifications are often an iterative process, and feedback from users and ongoing performance monitoring will help to identify further areas for improvement. Regular evaluations will ensure that the tooling system continues to meet evolving needs.

It’s important to note that the specific steps and processes involved in tooling modifications can vary based upon industry, complexity, and the specific requirements of the modification.

Tooling Modifications – Metal in or Metal out?

The debate on whether tooling modifications should involve adding metal into a component or removing metal from it largely depends on the specific circumstances and requirements. Here are a few factors to consider when deciding between metal in or metal out:

  1. Design Intent: Understanding the design intent of the component is crucial. If the required modifications involve enhancing or adding specific features, it may be more suitable to remove excess material (metal out) to achieve the desired result efficiently. On the other hand, if the modifications call for the addition of new features, or the reinforcement existing ones, adding metal (metal in) may be necessary.
  1. Material Constraints: Consider the material properties and its response to modification techniques. Some materials are better suited for removal processes like milling or turning, while others might require an additive process like welding or 3D printing.
  1. Cost and Time Efficiency: Assessing the costs and time associated with each modification technique is crucial. Removing metal might be a quicker and cheaper solution in some cases, while adding metal could be more time-consuming and costly. It is essential to evaluate which method aligns better with the project budget and timeline.
  1. Precision and Accuracy: Evaluate the level of precision and accuracy required. Adding metal could provide more flexibility in achieving intricate or complex modifications with high precision, especially in the case of additive manufacturing technologies. However, removing metal can also achieve precise modifications if the optimum tools and techniques are used.
  1. Structural Integrity: Consider the impact of modifications on the structural integrity of the component. Adding or removing metal can affect the overall strength, stability, and durability. Removing metal may mean that added support will be needed post-modification.

Why are Tooling Modifications Sometimes Necessary?

There are several reasons why tooling may sometimes need to be modified:

  1. Product improvement: Tooling modifications can help to enhance the quality and functionality of the product being manufactured. Through adjustments or additions to the tooling, manufacturers can improve product design, features, and performance.
  1. Cost reduction: Tooling modifications can help to optimise manufacturing processes, leading to cost savings over time. By fine-tuning the tooling, manufacturers can reduce material waste, minimize production time, or streamline assembly processes, thereby lowering overall production costs.
  1. Compatibility with new materials: If manufacturers want to introduce new materials into their production process, the existing tooling may not be suitable. Modifying tooling can enable the use of new materials, such as alloys or composites, which might require different machining or moulding techniques.
  1. Adaptation to changing requirements: As market demands evolve, manufacturers may need to modify tooling to meet new requirements. For instance, if there is a need for higher production volumes, tooling may need to be modified to increase output capacity or to ensure faster manufacturing cycles.
  1. Correcting issues or defects: Tooling modifications may be necessary to fix any issues or defects detected during the production process. It could involve resolving problems in relation to part quality, tolerance, precision, or functionality.
  1. Customization or reconfiguration: Sometimes, manufacturers may need to modify tooling to accommodate customized products or design variations. Modifying tooling allows for product variations without completely redesigning the manufacturing setup.

What Limitations Are There with Tooling Modifications?

There are several limitations when it comes to modifications to tooling:

  1. Cost: Modifying tooling can be an expensive process. Depending on the complexity and scale of the modifications required, it can involve significant investment in terms of labour, materials, and equipment.
  1. Time: Complex changes or redesigns can be time-consuming. This can lead to production delays and impact overall project timelines.
  1. Expertise: Modifying tooling requires specialized knowledge and expertise. It is important to have skilled professionals who understand the tooling design and manufacturing process to ensure that the modifications are carried out effectively and accurately.
  1. Compatibility: Compatibility with existing machinery and processes is key. Tooling modifications should align with the manufacturing setup to ensure seamless integration and optimal performance.
  1. Design limitations: Tooling modifications may have design limitations due to several factors, including space constraints or manufacturing capabilities.
  1. Impact on tool life: Introducing significant changes may alter the stress distribution, wear patterns, or overall performance of the tool, which may potentially reduce its lifespan.
  1. Risk of errors: Tooling modifications can introduce errors into the manufacturing process. If not carefully planned and executed, modifications can lead to quality problems, rework, or scrap.
  1. Patent and legal issues: Tooling modifications may infringe upon existing patents or intellectual property rights. It is crucial to ensure that modifications do not violate any legal or contractual obligations.

Overall, while tooling modifications can be beneficial for improving efficiency, productivity, or product quality, these limitations need to be carefully considered and managed to minimise risks and ensure successful implementation.

Knowledge Hub

In Focus: Electronics Manufacturing and Injection Moulding

As part of our ‘In Focus’ series of articles, we turn our attention to the electronics sector. We examine the crucial role played by injection moulding in the manufacturing of many of the most used electronics components and devices out there.

We explore the history of this relationship in detail. We also examine just why injection moulding is such an ideal process when it comes to making complex electronic parts and components.

The Role of Injection Moulding in the Electronics Industry

The injection moulding process has played a significant role in the production of electronic components for several decades now. It has been widely utilised for the efficient and cost-effective manufacturing of various electronic parts.

During the early 1960s, the increasing demand for electronic devices required the production of intricate and precise components. Injection moulding provided an ideal solution, producing complex shapes in large quantities with minimal material waste.

As technology advanced, the electronics industry embraced the convenience and versatility of injection moulding. The process facilitated the manufacturing of components such as connectors, housings, switches, and various other parts. These parts were extremely precise and high in dimensional accuracy.

Injection moulding also allowed for the integration of additional features. These include threads, ribs, and undercuts in electronic components, improving their functionality and dexterity.

The incorporation of different materials and additives into the injection moulding process enabled the production of components with specialised properties. Such properties include conductivity, flame resistance, and enhanced mechanical strength.

Over the years, injection moulding technology has continued to evolve, enabling manufacturers to produce even smaller electronic components. This has become more prevalent as the demand for miniaturisation has grown. This has led to the production of tiny connectors, micro switches, and intricate parts for miniaturised electronic components such as smartphones, wearable tech, and medical devices.

What are the Common Features of Plastic Electronic Components?

The common features of plastic electronic components are:

  1. Lightweight: Plastic is a lightweight material which makes electronic components easy to handle and install.
  1. Durability: Plastic electronic components are often made from durable, high-quality materials that can withstand various environmental conditions and mechanical stress.
  1. Cost-effective: Plastic is a cost-effective material compared to other options like metal or glass, making it a popular choice for mass-produced electronic components.
  1. Insulation: Plastic offers excellent electrical insulation properties, preventing any unwanted electrical conduction between components or external elements.
  1. Versatility: Plastic can be moulded into various shapes and sizes. This allows for the creation of intricate and customized designs to accommodate different electronic applications.
  1. Resistance to corrosion: Plastic is not prone to corrosion or rusting. This makes it suitable for electronic applications that may be exposed to moisture or other corrosive substances.
  1. Thermal stability: Plastic components often have a good thermal stability, meaning they can withstand high temperatures without degrading or deforming.
  1. Transparency: Some plastic materials, such as acrylic, are transparent. This makes it suitable for applications where visual inspection or light transmission is important.
  1. Ease of fabrication: Plastic can be easily moulded, extruded, or formed, allowing for efficient manufacturing processes and faster production cycles.
  1. Compatibility with other materials: Plastic electronic components can be combined with other materials such as metals or glass to create hybrid components that offer the advantages of both materials.

How Does Plastic Injection Moulding Support the Electronics Sector?

Plastic injection moulding plays a crucial role in the electronics sector by providing a cost-effective, efficient method of manufacturing complex plastic components.

Here are some of the ways that plastic injection moulding supports the electronics sector:

  1. Production volume quantities: Injection moulding enables the mass production of plastic electronic devices. Plastic parts, such as casings, connectors, and switches, can be produced in large quantities quickly and consistently.
  1. Design flexibility: Injection moulding offers excellent design flexibility, allowing for the creation of intricate shapes, thin walls, and complex geometries. This is important, as some devices need to be unique in their shape and size to accommodate specific functionalities, or to fit within limited spaces.
  1. Cost efficiency: The use of injection moulding in the electronics sector helps to reduce manufacturing costs. Once the mould is created, production becomes highly efficient, with faster cycle times and reduced material wastage. Additionally, large volumes ca be produced in a single manufacturing run. This reduces labour costs and minimizes production expenses.
  1. Consistency and high precision: Injection moulding provides precise control over the dimensions and specifications of the components. This is crucial in the electronics sector, where accuracy and quality control are essential for the proper functioning of electronic devices. The process ensures consistent parts through each production cycle, minimizing defects and variations.

5. Material selection: Plastic injection moulding allows for a wide range of plastics to be used, offering versatility in material selection. Electrical-grade plastics can be chosen based on specific requirements such as thermal conductivity, electrical insulation, flame retardance, or resistance to environmental factors. This ensures that the electronic components are suitable for their end applications.

  1. Integration of additional features: Injection moulding allows for the integration of additional features, such as snap-fits, clips, threads, or inserts. These integrated features eliminate the need for secondary assembly processes, reducing manufacturing time and costs.

What are the Challenges of Making Plastic Electronic Components?

There are several challenges associated with making plastic electronic components, including:

  1. Conductivity: Plastic materials are generally non-conductive. This poses a challenge in creating electronic components that require the flow of electricity. Special conductive grades of plastics, or incorporating conductive fillers like carbon nanotubes or metal particles, need to be used to overcome this challenge.
  1. Heat dissipation: Plastic has poor thermal conductivity compared to metals. In electronic components that generate heat during operation, such as microchips or power transistors, heat dissipation becomes a significant concern. Special design considerations or additional heat management systems are needed to prevent overheating and ensure the components function properly.
  1. Dimensional stability: Plastics can expand or contract with changes in temperature, humidity, or exposure to environmental factors. This makes it difficult to maintain precise dimensions required for electronic components, affecting their performance and reliability. Proper material selection and design engineering techniques are needed to ensure dimensional stability.
  1. Mechanical strength: While plastics can be lightweight and flexible, they generally have lower mechanical strength compared to metals. Electronic components often require certain structural integrity to withstand handling, vibrations, and environmental stresses. Reinforcement techniques or the use of other materials in combination with plastics may be necessary to ensure adequate strength.
  1. Compatibility with other materials: Electronic components are often assembled using different materials such as metals, ceramics, or other plastics. Compatibility issues can arise due to differences in thermal expansion, adhesion, or chemical reactions between materials. Close attention needs to be paid to material selection and interfacial properties to ensure proper integration and long-term functionality.
  1. Recycling and sustainability: As plastic electronic components reach the end of their lifecycle, ensuring their proper recycling and disposal becomes important for environmental sustainability. However, the combination of different materials in these components can complicate the recycling process. Developing efficient recycling techniques and designing components for easier disassembly and material separation are ongoing challenges.

Addressing these challenges requires extensive research and engineering expertise. Collaboration among material scientists, electrical engineers, and product designers will be required to create reliable and efficient plastic electronic components.

Knowledge Hub

How Much Does an Injection Mould Tool Cost?

At RP Technologies, one of the most common questions we’re asked is ‘how much will my injection mould tool cost?’

We often get asked this question very early on in our discussions with customers, sometimes even before we’ve even had the opportunity to review the 3D CAD design.

For all injection mould tooling, the cost differs per tool. There is no standard cost for a tool. The cost is based upon the requirements of a particular tool. Each tool is built to produce injection mouldings of different types, all of which have different final applications. Therefore, it is natural that each will be designed differently to achieve these objectives.

Costings are based on several different variables that must be factored into the quotation process by the manufacturer. Let’s examine some of these variables in more detail….

What Influences the Cost of an Injection Mould Tool?

Design Complexity – parts with complex geometries will usually require tooling that is more challenging and time consuming to produce. Consequently, these tools will likely cost more.

Finish – some tools require specialist cosmetic finishes, customisation or polishing. These finishes will take time and will need to be applied through the use of skilled manual labour.

Cavities – the number of cavities may affect the cost of the injection mould tool. For tools with fewer cavities, the cost may be less because they will require less work compared to tools with multiple cavity features.

Type of Metal Usedaluminium tooling is a less expensive method than steel tooling, but still offers many of the same benefits.

Time – the time needed to produce the tool will also impact upon its cost. Tools that are highly complex with many contours may take longer to produce than more simple tools.

Labour – these types of complex tooling usually require more pairs of skilled hands to complete, which has an impact on customer cost due to the increased labour required.

Family Tooling – considerable savings can be achieved with family tooling, as different parts can be injection moulded from the same tool, instead of having to manufacture a new tool per component.

Capabilities of Manufacturer – vertically integrated manufacturers with secondary services, such as toolmakers with injection moulding capabilities, may be less expensive for customers than single source suppliers.

Undercuts – parts with undercuts will be more expensive to produce.

Material Choice – whilst not affecting the build of the tool itself, the material choice may affect the overall project cost, as some grades of plastic will be more expensive than others.

Value-Added Operations – secondary operations such as insert moulding and overmoulding may also result in a higher overall project cost than a standard tooling/moulding project.

Other Factors to Consider

It must be remembered when assessing the cost of injection mould tooling that one of the advantages of this method is that, unlike 3D printing, thousands of components can be produced from a single tool. This makes tooling a more cost-effective option for production volume projects – low, medium, or high – where the cost-per-unit can be quite reasonable.

It is also worth remembering that each tool will be guaranteed for a minimum number of parts. Some low-medium volume tools can achieve tens or even hundreds of thousands of parts. With a little maintenance over time, tooling can be subject to repeat production cycles. This means that these tools can produce repeatable parts over many years, making the investment worthwhile in the long term if sustained production is required.

In the main, injection mould tools which have tight tolerances, multiple cavities, and longer production lives may take longer to build and require more of an upfront capital investment.

As with most things, if the tooling is produced to a high quality in the first instance, it will be more likely to stand the test of time and require less maintenance than low quality tooling.

The RP Difference

At RP Technologies, we store all our manufactured tooling at a secure facility at no extra cost to our customers. We also maintain the tools for free, if required. In addition, each of our tools is guaranteed to produce a minimum number of parts, so our customers know at the start of the toolmaking process how many total parts each tool will achieve in its lifetime.

Many of our tools have ended up producing a much greater volume of parts than they have originally been guaranteed for. This is due to the quality of the tooling process and the care that we take when manufacturing our tooling.

All our production is carried out at our purpose-built 25,000 sq. ft. production facility in the West Midlands. We do not outsource. We like to manage the process ourselves so we can ensure that our very high standards of manufacturing are being met with every new project we take on.

If you have a need for injection mould tooling and you’re looking for a reliable and expert UK manufacturing partner, please get in touch with us today. You can either call us on +44 (0) 121 550 5868, or you can email us at info@rptechnologies.co.uk.

Knowledge Hub

The Importance of CAD Design in Manufacturing

What is CAD Design?

CAD Design, also known as Computer-Aided Design, is the use of computer systems and software to create, modify, or optimize the design of various products, structures, or systems. It is commonly used in engineering, manufacturing, and other related fields.

CAD Design provides a digital representation of a physical object or system, allowing designers to create detailed 2D or 3D models. These models can be easily manipulated, analysed, and modified to evaluate design alternatives, perform simulations, and generate technical documentation.

CAD Design software typically offers various tools and functionalities, such as geometric modelling, assembly modelling, drafting, rendering, and analysis. It enables designers to visualize and test their designs before physical production, reducing errors, improving efficiency, and saving time and resources in the design process.

Overall, CAD Design allows designers to create accurate and precise models, collaborate with other team members, and streamline the design process, ultimately leading to the development of better products and structures.

How is CAD Design Used in Toolmaking?

CAD design is an integral part of the toolmaking process as it allows for the creation, modification, and visualization of tools in a digital environment before they are physically produced. Here’s how CAD design is used in the toolmaking process:

  1. Conceptualization: CAD software is used to create initial tool designs based on specific requirements and ideas. Designers can quickly sketch and modify various tool concepts to explore different options.
  1. Detailed Design: Once a concept is selected, detailed design work begins. CAD tools enable engineers to create accurate 2D and 3D models of the tool, incorporating specific dimensions, clearances, tolerances, and features required for its functionality.
  1. Visualization and Analysis: CAD models allow designers and stakeholders to visualize the tool in a digital environment, including its appearance, shape, and structure. Product engineers can also conduct virtual walkthroughs to identify potential issues and make necessary modifications. Finite Element Analysis (FEA) and other simulation tools can be used to assess structural integrity, stress distribution, and performance of the tool.
  1. Collaboration and Communication: CAD files provide a common platform for sharing and collaborating with other departments involved in the toolmaking process, such as manufacturing, quality control, and toolmakers themselves. This improves communication, reduces errors, and ensures everyone has up-to-date information.
  1. Manufacturing Preparation: With CAD models, toolmakers generate accurate engineering drawings, including dimensions, tolerances, and assembly instructions, which are essential for the manufacturing process. These drawings assist in selecting appropriate raw materials, machining operations, and determining optimal workflows.
  1. Prototype Development: Once the design is finalized, CAD models are used to create prototypes of the tool. These prototypes provide an opportunity to assess the design’s functionality, identify potential flaws, and make final adjustments before proceeding to full-scale production.

CAD design lends many benefits to the toolmaking process. It enables faster iterations, reduces physical prototyping costs, improves design accuracy, facilitates communication, and enhances collaboration between various stakeholders.

The Advantages of Using CAD Design in the Toolmaking Process

CAD (Computer-Aided Design) plays a crucial role in the toolmaking process by offering some very important advantages:

Precise and accurate design: CAD software allows toolmakers to create highly accurate and precise designs, ensuring that the tools manufactured will meet the required specifications. This helps to eliminate errors and minimize revisional work, saving time and costs in the overall toolmaking process.

Improved productivity: CAD software enables toolmakers to create designs more efficiently and quickly. It provides a wide range of tools and features that assist in creating complex geometries, optimizing the design for manufacturability, and automating repetitive tasks. This helps to increase productivity and speed up the toolmaking process.

Integration with manufacturing processes: CAD software often integrates with other manufacturing tools and processes, such as computer-aided manufacturing (CAM) and computer-aided engineering (CAE) systems. This integration allows for seamless transfer of design data to manufacturing equipment, enabling more efficient production of tools.

Overall, CAD design is essential in the toolmaking process as it enhances accuracy, productivity, visualization, and collaboration. It helps to streamline the entire toolmaking process and ensure the production of high-quality tools that meet the desired specifications.

Using CAD Design for CNC Machining

CAD design isn’t just a valuable part of the toolmaking process. It can also be used in several other highly important manufacturing processes. One such process is CNC machining.

CAD design is used for CNC (Computer Numerical Control) machining in several ways:

  1. Designing Parts: CAD design software allows engineers and designers to create 3D models of parts that need to be machined. They can accurately define the dimensions, shape, and features of the part, including holes, curves, and intricate details.
  1. Generating Toolpaths: Once the part is designed, the CAD software can generate toolpaths. These toolpaths guide the CNC machine in terms of where and how to cut the material. The software calculates the necessary commands, such as feed rate, depth of cut, and tool movement, to create the desired part.
  1. Simulating the Machining Process: CAD software often provides simulation features that allow users to visualize the machining process before it actually happens. This allows for the identification of potential errors or interferences in the design or toolpaths, ensuring that issues are resolved before manufacturing.
  1. Iterative Design and Prototyping: CAD design enables engineers and designers to quickly modify and iterate on the part design after simulating the machining process. By making adjustments in the software, they can evaluate the impact on the manufacturing process and optimize the design for better functionality and manufacturability.
  1. Documentation: CAD designs provide a digital record of the part geometry, dimensions, and tolerances. This documentation is crucial for consistently reproducing the part in future manufacturing runs.

Knowledge Hub

Injection Moulding and the Medical Device Sector

What Role Does Injection Moulding Play in the Manufacture of Medical Devices?

The relationship between injection moulding and the medical device sector dates back to the mid-20th century.

In the early days, medical devices were predominantly made from metal or glass. Producing them required skilled labour and lengthy manufacturing processes. Injection moulding offered a revolutionary method to produce medical devices faster, more cost-effectively, and with greater precision.

During the 1940s and 1950s, the use of plastics in medical devices began to gain popularity due to their favourable properties. These include durability, lightweight nature, and corrosion resistance. Injection moulding enabled the mass production of intricate plastic components with consistent quality. This proved to be a significant advancement for the medical industry.

One of the early breakthroughs in the use of injection moulding for medical devices was the development of a plastic syringe in the 1950s. This innovation reduced the risk of breakage and contamination associated with glass syringes. This made it safer and more convenient for healthcare professionals to administer medications.

Throughout the following decades, injection moulding technology continued to evolve, becoming more sophisticated, efficient, and versatile.

The introduction of advanced materials, such as biocompatible plastics and elastomers, expanded the possibilities for medical device design. This enabled manufacturers to create devices with enhanced properties.

Advances in mould-making techniques and computer-aided design (CAD) were also important.

Today, injection moulding plays a vital role in the medical device industry. Injection moulding enables high-volume production of disposable devices, custom-made components, and intricate designs that would otherwise be impractical or cost prohibitive.

The Advantages of Using Injection Moulding When Manufacturing Medical Devices

Injection moulding has many advantages when manufacturing medical devices.

Let’s take a moment to explore some of these advantages in more detail:

  1. Precision and accuracy: Injection moulding offers high precision and accuracy, allowing for the production of intricate and complex medical devices. This is crucial in the medical field where precision is paramount to ensure proper functionality and safety. It is also ideal for medical devices which contain specialised features.
  1. Cost-effective production: Injection moulding is a cost-effective manufacturing method, especially for mass production. It allows for high-volume production with relatively low labour costs and shorter production cycles. It can produce parts at high volume where mould machines can be programmed so that production cycles can be largely automated.
  1. Material compatibility: Injection moulding is compatible with a wide range of materials which are suitable for medical devices. These include various types of plastics and polymers. This versatility allows manufacturers to select materials that meet specific requirements such as biocompatibility, sterilization compatibility, and durability.
  1. Consistency and repeatability: Injection moulding offers consistent and repeatable results, ensuring uniformity in the production of medical devices. This is crucial in maintaining quality standards, meeting regulatory requirements, and ensuring the safety and effectiveness of the devices.
  1. Customization and design flexibility: Injection moulding enables the incorporation of intricate features, textures, and designs into medical devices. This flexibility allows manufacturers to meet the specific needs and requirements of healthcare professionals and patients, enhancing usability and functionality.
  1. Sterilization compatibility: Medical devices manufactured through injection moulding can withstand various sterilization methods. These include gamma radiation, ethylene oxide treatment, or autoclaving. This is essential to ensure the safety and sterility of medical devices and equipment.
  1. Scalability: Injection moulding can easily scale up production to meet increasing demands for medical devices. As the need for healthcare products continues to grow, injection moulding allows for efficient scaling without compromising production quality or costs.
  1. Supports specialist product features: Injection moulding enables the production of devices and equipment which accommodate different patient needs. Its versatility allows for the inclusion of additional features, such as snap-fit connections, threads for screws, and overmoulding of different materials or components.

What Types of Medical Devices are Created Using Injection Moulding?

Injection moulding is used in the manufacture of a wide variety of medical devices and equipment. Some examples include:

  1. Syringes: Injection moulding is commonly used to produce plastic syringes, which are essential for administering medications, vaccines, and other types of injections.
  1. IV components: Many components of intravenous (IV) systems – such as connectors, tubing, and chambers – are made using injection moulding. These devices are crucial for delivering fluids, medications, and blood products to patients.
  1. Surgical instruments: Injection moulding is used to produce a range of surgical instruments. These include forceps, clamps, scalpel handles, and retractors. These instruments are used in various surgical procedures.
  1. Drug delivery devices: Many drug delivery devices, such as inhalers, insulin pens, and implantable devices, are manufactured using injection moulding. These devices are designed to deliver medications at regular intervals and in specific doses.
  1. Orthopaedic devices: Injection moulding is used to produce orthopaedic devices like splints, braces, and prosthetic components. These devices provide support and assistance in the treatment of musculoskeletal conditions and injuries.
  1. Dental devices: Injection moulding is used to manufacture a range of dental devices. These devices include mouthguards, orthodontic components, dental retainers, and trays for teeth whitening and impression-taking.
  1. Diagnostic devices: Various diagnostic devices, including test kits, test tube holders, pipettes, and sample collection devices, are produced using injection moulding. These devices are essential for accurate and efficient diagnostics.
  1. Disposable medical supplies: Many disposable medical supplies, such as gloves, face masks, gowns, and urine collection cups, are manufactured using injection moulding. These supplies help maintain sterility and prevent the spread of infections.
  1. Catheters: Injection moulding is commonly used to manufacture different types of catheters, including urinary catheters, central venous catheters, and angiographic catheters.
  1. Implantable devices: Some implantable medical devices, such as certain types of pacemakers and orthopaedic implants, are produced using injection moulding. These devices are designed to be inserted into the body for long-term support or treatment.

Overall, injection moulding plays a critical role in the manufacturing of numerous medical devices, contributing to advancements in patient care, diagnosis, and treatment.

As a key manufacturing process, injection moulding provides a reliable and efficient production method that meets the stringent quality and regulatory requirements of the healthcare industry.

Knowledge Hub

10 Hot Topics for Injection Moulding in 2024

As we head into the new year, we’ve put together a hit list of 10 hot topics to look out for in the injection moulding industry over the next twelve months.

Predicting future trends is always subjective and uncertain, but based on current key topics and advancements, some potential industry developments that could occur in 2024 are:

  1. Sustainable Manufacturing and Eco-friendliness: The growing focus on sustainability and environmental best practice will put pressure on injection moulding companies to reduce their carbon footprint. This could involve sourcing more sustainable materials for use in the production process, reducing energy consumption, minimizing waste, and improving recycling capabilities.
  1. Material Innovation: With evolving customer demands, there could be an increased need for advanced materials that offer enhanced properties like higher strength, heat resistance, biodegradability, and conductivity. The adoption of new materials could pose challenges in relation to processing, tooling, and sourcing suitable alternatives for traditional plastics.
  1. Automation, Digitization, and Industry 4.0: The injection moulding industry is becoming more connected and automated with the adoption of technologies like Internet of Things (IoT), artificial intelligence (AI), and data analytics. The challenges in 2024 might revolve around optimizing productivity, ensuring cybersecurity, integrating complex automation systems, and upskilling the workforce to adapt to this digital transformation. Such technological changes could enable increased efficiency, accuracy, and reduced labour costs.

Adopting these technologies, however, brings its own set of challenges, such as the need for skilled technicians, the challenge of integrating complex systems, and the importance of maintaining data security.

  1. Lighter Weights: There is now an increasing market demand for more lightweight plastic injection moulded components. With lighter weight materials comes a reduction in associated costs. This can be particularly important when manufacturing large volumes.

Using lighter weight materials also has positive cost implications for distribution and storage. The benefits of lightweight materials differ depending upon the sector in which the final product is to be employed. For instance, when used in the aerospace, automotive, and rail sectors, lighter weight materials can help to reduce fuel and energy consumption.

  1. Regulatory Compliance and Safety: Governments and regulatory bodies may introduce new regulations or strengthen existing ones with a focus on product safety, recycling, waste management, and reusing materials. Injection moulding companies may need to ensure compliance with evolving standards, invest in safety measures for materials and workers, increase product quality, and adopt responsible manufacturing practices.
  1. Design for Additive Manufacturing (DfAM): As additive manufacturing technologies continue to evolve, there might be a shift towards integrating injection moulding and 3D printing. This may mean developing new design guidelines, optimizing tooling for hybrid manufacturing, and addressing challenges in relation to material compatibility and process integration.
  1. Skilled Labour Shortage: The injection moulding industry might face a shortage of skilled workers due to changing demographics, the retirement of experienced personnel, or increasing technological complexities. Attracting and retaining a skilled workforce could be a challenge, and companies may need to invest in training, apprenticeship programmes, or automation to mitigate the impact.
  1. Increasing customization requirements: Consumer demands for personalized products are rising, which can lead to smaller production runs and increased customization. This puts pressure on injection moulders to offer flexibility, faster turnaround times, and cost-effective solutions to meet the changing market demands.
  1. Market Volatility and Global Supply Chain Disruptions: Social turbulence, economic instability, or geopolitical factors may negatively impact global supply chains. Injection moulders may face challenges in relation to sourcing raw materials and industrial equipment, shipping and logistics delays, and disruptions caused by unforeseen events like pandemics, natural disasters, or political instability.

Developing contingency plans and reevaluating supply chain strategies will be crucial in mitigating potential disruptions. It may also be advantageous to improve forecasting and risk management strategies to maintain market competitiveness.

  1. Reshoring: Such supply chain disruptions will likely see a continuation of a key theme of 2023 – reshoring. Reshoring is the process of returning product manufacturing back to its country of origin. Places like China have suddenly become less attractive options for UK companies looking to have products manufactured, due to world events such as the war in Ukraine and COVID-19. This has already led to many UK companies bringing their manufacturing back home, a trend which will possibly continue to gain pace in 2024.

It is important to note that these potential issues are speculative and based on current trends. The actual challenges faced by the injection moulding industry in 2024 could differ based upon socio-economic factors, innovations, global political events, or market dynamics.

Knowledge Hub

The Challenges of Manufacturing in China

For several years now, China has been the centre of global manufacturing. It is currently the largest producer of manufactured goods in the world. Many companies in the UK have relied upon China’s manufacturing output to create their products.

However, in the light of recent events across Europe and the rest of the world, this reliance has started to change, and China’s monopoly on global manufacturing has been weakened.

In this article, we will look at some of the events that have led up to these changes. We will also examine some of the key determining factors that have seen many UK companies return to manufacturing suppliers here at home as an alternative to those based in China.

China – The Age of Industrialisation

During the 1950s, China underwent a period of great economic change. Mao Zedong, also known as Chairman Mao (or Mao Tse-tung in the English-speaking world), was Chairman of the Communist Party of China for over three decades between March 1943 and September 1976. Under his leadership, China began a long and expansive period of industrialisation.

In 1952, 83% of the Chinese workforce was employed in agriculture. In 1953, with the help of the Soviet Union, Mao began an ambitious plan to bring industrialisation to China on a significant scale. The ‘Maoist Great Leap Forward’ plan was implemented between 1958 and 1961. Its goal was to transform the People’s Republic of China from an agrarian economy based on farming to a modern communist society with a strong economic base at its centre.

The Soviet Union gave the Chinese some of the most advanced technology in the world. They also sent many thousands of Soviet technical advisors to China to oversee some 156 industrial projects.

The overall result was a sea change in the Chinese economic model. China began to rely more heavily on industrial output. Over the next quarter of a century, the value of agriculture to the country’s GDP had declined from 70% in 1952 to 30% in 1977.

In 2022, the percentage of the workforce employed in agriculture had fallen to 24%, compared to 83% in the 1950s.

In 2021, China’s manufacturing output had risen to $4,865.83 billion, which represented a 26.04% increase from 2020.

Why Has China Become a Popular Choice for Manufacturing?

China’s position as the foremost manufacturing power in the 21st century is due to a few important factors:

Low labour costs: employees are put to work for long hours with few rewards. Industrialists benefit from gaps in employment legislation. Low-cost labour is also possible because of China’s high population. As there are so many people competing for jobs, the rate of unemployment is high, which in turn has driven down wages.

Lack of regulatory compliance: in order to maximise manufacturing opportunity, much of this sector has been almost completely deregulated to encourage investment and to promote exports of manufactured goods.

Quick lead times: Chinese manufacturers have gained a reputation for supplying goods extremely quickly.

Infrastructure/Business Ecosystem: China has invested heavily in an extensive infrastructure which enables it to hold great sway over its supply chain partners.

Low taxes and duties: goods can be exported to different geographical territories at low cost to the customer.

Poor environmental regulation: with little or no regulations for sustainable practice, the manufacturing industry is allowed to thrive at the expense of environmental wellbeing. Industrialists are also able to avoid waste management costs.

Absence of law to protect workers’ rights: Chinese factories do not adhere to the same laws which some of their overseas competitors are subject to, including laws relating to child labour, involuntary labour, working hours, and health and safety.

Government influence: government investment in domestic infrastructure combined with a favourable pro-business tax system has helped to keep manufacturing costs at a very low level.

Strong domestic economy: a strong economy has led to increased spending. This has increased the value of the Chinese Yuan (CNY) and has provided Chinese manufacturers with the opportunity to expand their businesses.

World Events which have Served to Weaken China’s Manufacturing Dominance

In recent years, we’ve witnessed many significant and quite unpredictable changes in the macro environment which have served to shake China’s stranglehold on the global manufacturing sector.

Let’s look at some of the key world events in more detail:

Ukraine war – the political turmoil in Eastern Europe has led to supply chain disruptions, export challenges, rising costs, and uncertainty in global financial markets.

Energy crisis – inflated energy prices have meant that Chinese manufacturers have had to increase their prices, the burden of which has been borne by the customer. This has made China a less attractive option than before.

COVID-19 – delays and shortages related to the pandemic have prompted many customers to re-evaluate their reliance on China, and to look elsewhere for an alternative solution.

US economic policy – the US Government’s hardline trade policies with China have resulted in a succession of costly tariffs which have driven prices up.

Continued lockdowns in China – as China struggles to break free from COVID-19, lockdowns are still part of day-to-day life, and have had negative implications for manufacturing activity.

Protests – over the past year, several demonstrations have taken place across China in protest against these sustained periods of post-pandemic lockdown. This unrest has had poor economic implications for China, as well as for overseas financial markets.

Reduced investment – these socio-political events have led to a reduction in investment in China. For a country whose success has been built on capital investment, this has negatively impacted its economic progress.

In addition to these factors, China has also been confronted with many other challenges, including increased labour expenses, accelerated manufacturing competition from other developing economies, and a series of ongoing trade disagreements.

All this activity has seen some companies in the UK and overseas disengage with China and move to quickly diversify their supply chains. In many cases, this has seen corporate buyers look to their own domestic marketplaces for new manufacturing partners.

What Does All This Mean for Chinese Manufacturing?

The pace of companies moving production out of China is accelerating all the time, with China losing more manufacturing and export market share in several of its key sectors.

Chinese manufacturing companies had always been attractive because of price. But in the light of recent global events, Chinese manufacturers are no longer able to offer pricing which is as favourable as it once was. This has undermined arguably the key selling point for these manufacturers when trying to secure new business from overseas customers.

Some UK-based customers have seen their costs of doing business with Chinese manufacturers go up by over 25%.

Coupled with this, the supply chain has now become more complex and challenging in the aftermath of COVID-19, the war in Ukraine, and the United Kingdom’s exit from the European Union. Goods can no longer be depended on to arrive on time every time from the other side of the world.

Geopolitics is also a concern for some customers. The Chinese Government’s support for Russia, its diplomatic issues with the United States, and its aggression towards Taiwan has seen some UK based customers begin to question their support for Chinese manufacturing.

Here are some other key reasons why China has lost some of its pulling power:

  • Uncertainty over IP Protection: Intellectual Property (IP) laws are less robust than in many other countries, with low penalties for IP infringement. This makes it difficult for UK designers to protect valuable IP in a country where counterfeit is possible.
  • Competition with neighbouring economies: local nations such as India, Vietnam and Indonesia have provided increased competition to Chinese manufacturers by benefiting from even lower labour costs and reduced levels of regulation.
  • Economic downturn: China is currently experiencing adverse changes in their economic cycle, with manufacturing companies being squeezed by slow economic growth and rising costs.
  • Reduced foreign investment: there has been an increase in the number of investors leaving China in recent times. Overseas investors are concerned about security, government policy, and a lack of action on reform promises, according to the European Chamber of Commerce in China.

Other Sources:

If you’ve enjoyed reading this article, please check out our article on Reshoring, which can also be found in the Knowledge Hub section of our website.

Knowledge Hub

Things to Look for in an Injection Moulding Partner

Introduction

For newcomers to injection moulding, the process can appear quite daunting and unfamiliar. There are so many things to consider, so many choices to make, and so many potential pitfalls along the way.

For start-up companies, or sole traders with big ideas, this can be especially scary. Particularly if they’re working on a shoestring budget where every penny counts.

That’s why it’s so important to make effective decisions.

Perhaps the most important of all these decisions is choosing a manufacturing partner to support you through the production process.

We’ve put together a list of key factors to consider when making your decision.

We hope that this will serve as a useful guide, particularly to those individuals and companies out there who are embarking on the injection moulding process for the first time.

What to Look for in an Injection Moulding Partner

In-house Toolmaking and Injection Moulding

Sourcing an injection moulding partner who has their own in-house toolmaking and injection moulding is crucial.

In-house tooling and moulding capabilities allow manufacturers to ensure quality control of all tooling and parts that are produced. Since the quality of the finished components will be inextricably linked to the quality of the tooling, it is essential that both manufacturing tasks are carried out in-house, so that the process can be closely monitored from start to finish.

This will allow for greater efficiencies and economies of scale, meaning that better quality products can be delivered within shorter production cycles.

By choosing a manufacturer who has tooling and moulding capabilities all under one roof, it will also save customers the time and hassle of sourcing multiple production partners.

Quality Control

Injection moulded components often need to be produced to very tight tolerances. This requires absolute precision in the manufacture of both the tool and the plastic components.

Injection moulders must have stringent quality control measures in place. They should also have their own Quality Engineering department, who are involved in each project from conception right through to completion. This will ensure that any anomalies are detected as soon as possible, so that suitable resolutions can be identified and implemented.

Failure to adhere to rigid quality control checks could result in the production of defective final parts, as well as delays in bringing these end products to market. This will have negative commercial implications for the customer, including the incurrence of additional costs.

Certifications

Linked to Quality Control, it is worth ensuring that your injection moulding partner is fully accredited and has been audited by the relevant accreditation bodies on a termly basis. It is important to ensure that they are actively committed to maintaining these accreditations, and that they continue to participate in regular assessments by their accreditors.

ISO accreditations are the accepted standard of practice in the injection moulding industry.

Range of Services

Choose a manufacturing partner with a complete range of services, such as prototyping, part design, and mould flow analysis. Such companies are usually the most credible, reliable partners within the industry since they offer a comprehensive one-stop solution to all your manufacturing needs.

Injection moulding partners who supply sister services, such as toolmaking and CNC machining, are particularly useful. Not only do they reduce the need for multiple suppliers, but they also have a depth of knowledge in-house which can be vital during the completion of complex manufacturing projects, where a varied level of expertise may be required.

In the long run, this can prove to be more cost effective and can reduce production times.

Capabilities and Technologies

It is important before you embark on a project with a new supplier to ask about their production capabilities. You need to ensure that they have the capacity required to fulfil your order within whatever timeframe you require it.

It is important to ensure that the manufacturer has enough machinery, technology, and in-house expertise to deliver the project on spec and to the anticipated level of quality.

A company that invests in both its technologies and the professional development of its people is usually one that stays ahead of the curve.

Don’t be afraid to ask questions such as how many injection moulding machines do you have? Or how much experience do your toolmakers have? Or what quality tests can you offer to test the accuracy of a component? Or how big is your production facility?

These questions will help you to understand the type of manufacturer you are dealing with.

Plastics Knowledge and Understanding

Material selection is a key consideration during the injection moulding process. Working with experienced injection moulders and plastic polymer experts will help you to identify the correct grade of material for the end application.

Failure to select the correct material can result in a sub-standard final component.

Experienced injection moulding technicians and engineers can help to reduce costs by getting things right first time during the production process. This can significantly reduce the amount of plastic waste produced, thus making the process more environmentally friendly.

Industry Experience

Look for an injection moulding partner who understands your industry.

Although this is not essential, it can be beneficial to find a manufacturer with specific industry-related experience, as they will better understand the particular challenges of your marketplace.

In markets where there is a high degree of regulation – for instance, the aerospace sector – this is particularly important. If safety is a key requirement for the final application, industry expertise will help to ensure that the final parts are as robust and reliable as they can be.

Lifetime Guarantee

Find out how long the moulds are guaranteed for. A key question to ask is, does the manufacturer guarantee the moulds for the full life cycle of the project?

Manufacturers should be willing to give you a guarantee of how long they anticipate the mould lasting. They should be able to do this from the start. If minor adjustments are needed for the tooling in order to honour this guarantee over the lifetime of the tool, these should be completed by the manufacturer at no additional expense to the customer.

Effective Customer Service

Note that we are using the term ‘manufacturing partner’ in this article. This implies a company who will not only deliver high quality components, but one which will also be a source of best practice advice throughout the process. In short, a company with whom its customers can build long-standing mutually beneficial relationships based on shared trust.

This is especially important when tackling projects that are highly confidential and involve intellectual property or patent-protected designs. In such instances, professional manufacturing partners will be happy to sign confidentiality documents or non-disclosure agreements, which will help to protect the IP of the products under discussion.

Manufacturing partners who are always available to you and generous with their time are especially attractive.

Price

Price is a key factor for all businesses. Procuring goods and services for less will always hold significant sway with buyers.

However, choosing an injection moulding partner on a price-only basis can be a dangerous strategy. There must be a compromise between price and quality.

Other factors which are important include reliability, trustworthiness, transparency, and an ability to honour deadlines.

What Their Customers Say

There is a great deal of value in taking some time to read reviews about injection moulding companies by their existing customers before you enter into any agreement with them.

Also take the time to read customer testimonials on their website if they have them. You may even choose to speak to some of their customers in confidence about their experiences.

It is also worth investigating to see if they have won any industry awards. Recognition from within the supply chain from peers and competitors is always hard to argue with.

This type of research can help you to make a more informed and reliable decision.

Summary

There are many different factors to consider when sourcing an injection moulding partner.

The most important thing to remember is not to be afraid to ask questions. Find out as much as you can about a supplier; work hard to understand their capabilities, their expertise, their quality control processes, and the full extent of the services which they offer.

You can even seek independent advice from their existing customers if you think it would be a worthwhile exercise.

Asking questions will ensure that the manufacturer knows that they will have to work hard to keep your custom.

It will also help you to learn about the overall injection moulding process, and it will provide you with an opportunity through sustained dialogue to build a strong relationship, which will potentially be beneficial to both parties over time.

Looking for a new Injection Moulding Partner?

If you’re looking for an injection moulding partner but don’t know who to choose or how to go about it, we’d be happy to hear from you.

Even if you just want an informal chat about the process, or if you’d like to ask our advice on injection moulding or toolmaking, we’d be very happy to hear from you.

Please either call us on +44 (0) 121 550 5868, or email info@rptechnologies.co.uk.

Knowledge Hub

Reshoring

What is Reshoring?

Reshoring is the process of returning product manufacturing back to its country of origin. It essentially involves bringing production activities back from overseas to wherever the company who owns the products is based.

In recent times, the UK manufacturing industry has seen a significant increase in the number of domestic companies who have brought production of their goods back to the UK.

Overseas manufacturing outlets have become a less attractive option in recent years due to several reasons.

Let’s explore some of the external forces that have put pressure on overseas manufacturers….

Key Reasons for Abandoning Overseas Manufacturers

Longer lead times – Some overseas manufacturers have traditionally operated on very short lead times, particularly those in Asian markets. This has made them very attractive to UK customers who need parts fast. However, in recent times, changes in the global political landscape have stifled international supply chains resulting in less timely – and in some cases, unreliable – means of delivering products to other parts of the world.

Price – supply chain pressures and economic volatility has meant that some overseas manufacturers are no longer as competitive. Some UK-based customers have seen their costs of doing business with Chinese manufacturers go up by over 25%.

Ukraine war – the political turmoil in Eastern Europe has led to supply chain disruptions, export challenges, rising costs, and uncertainty in global financial markets.

Energy crisis – rising costs have meant that Chinese manufacturers have had to increase their prices, the burden of which has been absorbed by the customer.

COVID-19 – delays and shortages related to the pandemic have prompted many customers to re-evaluate their reliance on China, and to look elsewhere for an alternative solution.

Geopolitical factors – China has found itself on the opposing side of the table during the current Russia/Ukraine situation, which has left it at odds with many European customers.

Environmental issues – British companies are under increasing pressure to ensure compliance with environmental and corporate social responsibility best practice. Countries with poor human rights records, or those who do not protect workers’ rights, are rapidly becoming less attractive partners.

Why UK Companies are Moving Their Manufacturing Back Home

  • Greater certainty around delivery times
  • Less potential for supply chain disruptions
  • Easy, more flexible collaboration with domestic suppliers
  • The language barrier is eliminated, and communication is more open
  • Reduced supply chain complexity
  • Greater confidence in the quality of the final components
  • Cost advantages of overseas production are now less favourable (in China, for example, unit labour costs have risen sharply in the last few years)
  • Reduced shipping costs – the price of shipping goods from Asia, South America, and mainland Europe has increased dramatically, with serious implications for UK SMEs.

Some studies suggest that up to 40% of small businesses are considering a switch from overseas manufacturers to UK manufacturers, so that they can remove import challenges post-Brexit and reduce rapidly rising freight costs. These costs, coupled with increased legislation and bureaucracy, have made overseas manufacturing a financial and logistical headache for many UK businesses, eroding profit margins and stifling growth.

Manufacturing in the UK

The UK is known across the world as a manufacturing power. We have a rich history of making products and exporting them to the rest of the world. We are skilled in innovation, with advanced technologies and infrastructure to support manufacturing of all kinds.

Despite changes in the recent socio-political environment, such as Brexit and COVID-19, we remain a highly competitive option for companies at home and abroad who have a requirement for British manufacturing.

Let’s look at what makes us so unique….

Skilled manufacturing professionals – for centuries, the UK has had a distinguished history of manufacturing. Through the generations, we have demonstrated a strong tradition of producing expert engineers and technical craftsmen and women, which sustains to this day.

Education – the UK has some of the best universities in the world, with some of the most talented young engineers graduating every year, many of whom go on to embark upon careers as design engineers, product designers, and manufacturing professionals.

Dynamic supply chain – there are a range of support services which are available to manufacturers, such as management consultants and financial experts.

Research and Development (R&D) – the UK Government has invested in many research and development facilities to support companies who are looking to manufacture products in the UK.

Infrastructure – the UK has a well-developed infrastructure, including excellent transport networks and strong access to raw materials.

Legislation – clear and robust legislative policies which have been passed into law to protect businesses and to support entrepreneurial endeavour, including intellectual property (IP), patent protection, and trademarking laws.

Pro-government business support – post-Brexit, the UK Government has introduced a range of measures to support British businesses, including regulatory reform and tax incentives.

Stable political environment – the UK is a stable democratic country which has one of the strongest legal systems in the world. This stability provides businesses looking to manufacture products in the UK with confidence and security that any capital investments will be protected under the right of law.

Are You Looking to Reshore?

If reshoring is something you’re considering, we’d be very interested in hearing from you.

We’ve taken on several new customers lately who have moved their manufacturing projects from overseas territories such as China back to the UK.

If this is something you’re considering, please contact us on +44 (0) 121 550 5868, or email info@rptechnologies.co.uk.

Knowledge Hub

In Focus: The Hurco VMX60SRTi XP

In the second of our ‘In Focus’ series of articles, we profile the Hurco VMX60SRTi XP CNC Machining Centre.

This state-of-the-art 5-axis CNC Machine is the latest in modern machining technology.

RP Technologies purchased this expensive piece of equipment at the end of 2022, and with all the CNC machining work we’ve received since, it’s proved to be a very timely investment!

Let’s take a moment to review this machine in more detail, examining some of its unique characteristics and features, and trying to understand the importance of its role here at RP.

The Importance of CNC Machining to RP Technologies

The manufacture of CNC machined parts is one of our key services here at RP Technologies.

Along with toolmaking, injection moulding and rapid prototyping, CNC machining is central to what we do. We have, over the years, steadily developed the CNC department, investing in new machines and adding to our experienced team of CNC Programmers and Operators.

We have 10 CNC machinists and 20 CNC machines, 18 of which are 3-axis and 2 which are 5-axis.

We machine parts for prototype and low volume production runs in most metals and polymers. We start as low as 1 part, and we specialise in highly complex components that require precision engineering.

Our CNC machining projects are all supported by ISIR documentation.

All our CNC machining work is carried out in-house at our purpose-built production facility here in the West Midlands. We do not outsource anything. We like to ensure the highest levels of product quality, using the best CNC operators and machines that money can buy.

The latest addition to our CNC Tool Room is the Hurco VMX60SRTi XP 5 Axis Machining Centre, which we purchased in December 2022.

Let’s look at this new state-of-the-art piece of machinery more closely….

What is the Hurco VMX60SRTi XP?

The Hurco VMX60SRTi XP is a new, state-of-the-art 5-axis CNC Machining Centre. Its enhanced technologies have the capabilities to boost production capacity, increase operational efficiencies, and improve accuracy.

The Hurco VMX60SRTi XP has several new features. It has an enhanced graphics package, which is 1.4 times faster than its predecessors. Its advanced Ultimotion feature reduces cycle time by up to 30%, which will allow us to offer even more competitive lead times.

The design configuration utilises a swivel head and a C-axis rotary torque table that is embedded in the machine table. The increased size of the table provides maximum versatility, with the extra space being ideal for the performance of secondary operations.

The VMX60SRTi XP also boasts the enhanced version 10 software, superb MAX5 control, and improved, energy saving LED cabinet lighting. The Optional Ultimonitor incorporates Ultinet (networking) and ESF (Extended Shop Floor) capability of remote diagnostics.

There is an ergonomically designed control console with two 19” LCD touchscreens, 4GB RAM Memory, 10,000 block lookahead, 128GB Solid State Hard Drive, and a 2.7GHz Dual Core Processor. There is also a 12K Swivel-Head Spindle with X, Y, and Z axis travel.

The swivel head means that less manipulation of the component is required, making the machining process more precise and efficient to perform. The VMX60SRTi XP can also be used as a full capacity 3-axis machine during times when 5-axis parts are not being made.

The VMX60SRTi XP is ideal for low-medium volume work. It also has a larger part capacity than many earlier models. Its expert design and advanced technology help to deliver the highest performance capabilities to any machining application.

Key Benefits of the Hurco VMX60SRTi XP 5 Axis CNC Machining Centre

  • The swivel head, or “B” axis as it’s also known, has substantial advantages over the traditional trunnion 5 axis machine in that less manipulation of the component is required
  • Heavier or larger part capacity – only the vertical or load bearing is required
  • The generous size of the rotary table provides maximum versatility
  • The extra table space can be used for secondary operations or 3-axis work
  • Wide ranging application – the Hurco VMX60SRTi XP is ideal for any machining project
  • Time saving and efficient, allowing cost savings to be passed on to the customer
  • Perfect for low volume work or batch production

The Hurco VMX60SRTi XP – Key Statistics

>> 1,676 x 660 mm table, 1,360 kg capacity

>> Travels: 1,524 x 660 x 610 mm

>> Ø 600 mm embedded rotary table, 500 kg capacity

>> 12,000 rpm motorized spindle

>> 36.5 kW peak spindle

>> 40 station automatic tool changer

>> SK 40 spindle taper

>> 32 / 32 / 24 m/min rapid traverse rates

>> Patented UltiMotion HURCO technology, which reduces cycle time by 30%

>> Improved surface finish quality with UltiMotion

What This Means for RP

The introduction of the Hurco VMX60SRTi XP demonstrates RP’s commitment to making continued investments in our overall manufacturing and CNC machining capabilities.

This machine will help us to improve lead times, whilst also giving us the opportunity to produce even more complex and demanding metal and plastic machined components.

It will complement our other 5-axis and 3-axis CNC machining centres, providing added depth, improved capacity, and enhanced capability.

It will be the ideal tool for our prototype and low volume work.

What to Do Next?

Do you have CNC machining requirements for a low volume or prototyping project?

If so, we could be your perfect manufacturing partner.

Please call us today on +44 (0) 121 550 5868 or email info@rptechnologies.co.uk.

Knowledge Hub

Silicone Tooling vs Hard Tooling

Introduction

There are two main types of tooling which are employed in the injection moulding process: silicone tooling and hard tooling. It is important when embarking on a new project that you pick the right tooling method for the job. This will largely depend on what types of parts you want to produce, but there are also other factors to consider, such as financial constraints, speed of delivery and volume.

As with all injection moulding, the quality of the tool build will ultimately determine whether the finished components are of a high standard, durable, visually appealing, and fully functioning.

It is, therefore, extremely important to choose the right tooling process in order to achieve the intended outcomes for the final components.

To do this, we will need to explore silicone tooling and hard tooling in more detail. We will then compare these methods and review the advantages and disadvantages associated with both.

Silicone Tooling – What is it?

Silicone tooling is ideal for producing low volume rubber mouldings and urethane castings

Silicone tooling is less expensive than hard tooling and is usually used in cases where the production run is less than 100 parts. Most moulds can be relied upon for approximately 25 shots per cavity.

Silicone tooling is ideal for designers, engineers and manufacturers who are in the prototyping phase and are trialling a concept before moving to larger scale production. It is also used for consumer-based market testing, before final design iterations are made and the product is signed off for manufacture.

Hard Tooling – What is it?

Hard Tooling is made from metal, in our case aluminium, and it is known for its reliability over time. With hard tooling, manufacturers can work to very tight tolerances, making it the logical choice for projects where the final components are complex in their design.

Aluminium Tooling has a greater degree of flexibility than silicone tooling, in that it will support prototyping, as silicone tooling will, but it will also lend itself to pre-production and production volumes.

Silicone tooling – the Advantages and Disadvantages

Advantages

A cost-effective route into production for new entrants, or for those with limited production needs

Capable of facilitating short runs of products

Ideal for prototyping before committing to larger volume production

Often used for trialling and market research with consumers

Short lead times and fast order turnarounds

A variety of materials are available

Disadvantages

Lacks the resistance and durability of hard tooling, hence the term ‘silicone tooling.’

Silicone tools can only produce a very limited number of parts

Limited material choice

Once tooling has been completed, modifications to the tool are very difficult to implement

Unsustainable method with costs spiralling over time. Once the tool has worn out it will need to be replaced, which will involve more expense and potential problems with achieving part consistency

Hard Tooling – the Advantages and Disadvantages

Advantages

Ideal for producing higher volumes of parts over time (potentially well into the 100,000s)

Made from hard metals and so can withstand multiple production cycles

Modifications can be carried out to the tool more easily

Can achieve much stricter tolerances than silicone tooling

A single hard tooling mould can have several cavities, which will allow for multiple quantities of a part to be created at the same time

Hard tooling can withstand higher temperatures during production than silicone tooling

Although silicone tooling lends itself to many materials, options are even greater with hard tooling

Ideal for projects where manufacturers must adhere to testing requirements and function standards

Parts with rudimentary designs can be used immediately

Disadvantages

More time consuming to produce hard tooling

Costs are higher with this method of tooling

The tooling itself requires specialist precision machining and finishing capabilities

Summary

Silicone tooling is more suited to short runs for prototyping, market testing or very low volume production. It is a cost-effective option which offers favourable lead times and fast turnarounds. It is less suitable for production cycles and the tooling is less durable and long-lasting.

Hard tooling is ideal for higher volume production runs and the tooling is more resistant. Modifications can be made to the tool relatively easily, and hard tooling can achieve much stricter tolerances. However, it also involves greater upfront investment in time and money.

As with all manufacturing processes, the product designers and engineers will have to determine what the final component is to be used for before deciding which tooling route to take. These considerations will be based on the functionality, form, appearance, and volume of the part required. Cost and time considerations may also be factors.

The product owners will also have to determine what stage they are at in the product development phase and decide accordingly on the best option.

If you would like expert advice on a project which you are embarking upon, please either email us at info@rptechnologies.co.uk, or call +44 (0)121 550 5868, and we will be happy to assist you.

Knowledge Hub

New Product Development

What is New Product Development?

New Product Development (NPD) is the act of creating a new commodity or product for the commercial marketplace. It is essentially a series of steps that are taken from inception to roll out which see a new product designed, manufactured, and unveiled to the world.

NPD is an important activity for most companies. It is a means by which companies can stay ahead of their competitors, provide added value to their customers, and increase organic growth.

New products provide an opportunity for companies to sell more units and therefore increase revenue streams. NPD activity also allows companies to grow their market shares.

In a world where there is strong consumer demand, greater competition, and where changing digital and technological advancements are emerging all the time, it is important for companies to keep driving forward and developing their product range. Standing still in this environment will likely lead to rival companies gaining competitive advantage.

Fast-moving change has become an accepted – and expected – part of consumer culture. Customers of all types in all different industries have an expectation for companies to adapt and evolve, and for their product range to develop in a manner which reflects these rapidly changing times.

New products are designed to either solve an existing customer problem in a new or innovative way, or to enhance or move forward a similar product which is already out there in the marketplace in a much more rudimentary format.

The product development process is multi-layered and involves many internal and external stakeholders. As noted above, it involves several different steps, or stages.

Let’s look at these stages in more detail….

The Key Stages of New Product Development

Idea Generation

All new products start life in the same way – as a concept or idea. Each product is the brainchild of an individual or group of individuals.

The process usually involves a brainstorming session between product designers and product engineers. It may also include other stakeholders, such as marketing experts.

At this stage of the process, ideas are discussed and explored, with the relative merits of each being assessed before the optimum concept is identified for further development.

If done correctly, the idea generation phase should be the consequence of detailed research which has already been conducted to identify what gaps exist in the current market for NPD, and what problems any potential new product should be introduced to solve.

Research

Once the idea generation phase of the process has been completed, the Research phase begins.

By this point, a product idea will have been formed. The next step will be to further develop this idea by testing its likely suitability for the current marketplace.

To do this, research must be conducted. This research can take many different forms and can comprise either market research (where a sample of the target market is selected to answer questions on their consumer habits and tastes) or competitor analysis to determine how to potentially position this new product in relation to the competitors’ offerings.

This stage of the process also provides an opportunity to gain feedback from target consumers on what they think of your ideas before you advance too far down the road of developing your new product.

Planning

This is where the information collected in the previous stage is reviewed against the original concept, and any changes to the idea based upon the feedback provided are implemented.

At this stage in the process, the strategic goals and objectives for the product can be reviewed and finalised, and the overall concept can be refined to reflect these milestones.

The estimated product value and capacity can also be determined.

As soon as the concept has been clearly defined, the next step of the planning phase will be to source suitable manufacturing partners to help to take the project forward.

It is also where marketing professionals, either in-house or commissioned from outside of the organisation, will have to start thinking about how to successfully bring this new product to market once it is ready to launch.

Prototyping

The prototyping phase is where a physical prototype of the product is created with the help of whichever manufacturing partner/s has been chosen during the planning stage.

It is essentially a to-scale basic version of the product.

The prototype will help product designers and product engineers to understand how the product functions and looks in its true physical format.

Prototyping is a very important phase in the product development cycle. No matter how impressive the product concept might be, or how meticulous the planning, the prototyping phase will often unearth several key aspects of the design which have not necessarily been accounted for in the theoretical planning stages.

It also allows manufacturing partners to find solutions to complex manufacturing challenges before full scale production begins. It is important to go through this process so that the best solution for the manufacture of the product can be decided upon before producing the product at volume.

Consumer Testing

This is where consumers are invited to test the prototype and to provide feedback on its functionality, appearance, and positioning within the current marketplace.

The testing phase is essential in order to assess the commercial viability of the product and as a way of identifying any prototyping issues that may need to be ironed out before launch.

Often, the results of this feedback will mean that changes need to be made to the prototype to reflect consumer opinion.

It may be necessary to go back and forth between the prototype and the testing phases, making multiple changes and conducting several stages of consumer testing in order to get the final prototype absolutely right.

As soon as the prototype is produced in a form that consumers and product engineers are happy with, full-scale product development can begin.

Product Development

As soon as the prototype phase is concluded, a final cost analysis will be conducted to determine the commercial feasibility of producing the finished prototype at volume.

An original cost analysis should have been conducted before now, most likely at the research or planning stages, but a final analysis will also be needed if there have been any changes to the prototype since those preliminary calculations were made.

Providing the numbers still add up, full scale production can commence.

The production process will be carried out by the manufacturing partner identified at the planning stage. This can be the same production company who produced the prototype or a different one.

If costs prove to be prohibitive, or if a suitable prototype which meets the original objectives cannot be produced within the accepted cost parameters, the project may be abandoned.

Branding

At this stage of the process, the final product will have been produced and will be ready for the marketplace. Before it can be made available to the public, the branding of the product will need to be concluded.

This includes the development of the brand name, product slogan, packaging, price points, and the marketing message behind the product.

Marketers will also seek to position the product in the optimum space relative to its competitors. If it is a product which will be sold directly to the consumer, agreements with distributors such as retail outlets may also need to be finalised at this stage of the process.

Product Launch

This is the stage of the process where the product enters the public domain. The product development team has completed their work, and the exciting moment has arrived. It is also the phase of NPD which is known as the commercialisation phase, or the market launch.

At this stage, the product becomes available for purchase. The marketing strategy supports the sales of this new product, helping to raise awareness and create interest amongst the target demographic.

This is the stage of the process where the product takes on a new life of its own, independent of its creators and manufacturing partners.

It is also the first stage of the process where the product can start to deliver sales revenue, and a financial return can be enjoyed. This is where the company can begin to recoup some of the money invested in the product’s development, with new gains compensating for the expenditure incurred in getting the product to market.

Post-Launch Review

As with any big commercial undertaking, it is important once the work has concluded to review the process in full. This review should include each of the key players, including the product designers, product engineers and marketing specialists, to determine what was successful and what wasn’t.

In the fast-moving pace of modern business life, this is the stage of NPD which is either usually forgotten or neglected. But it is an essential element of the wider process.

NPD can be an expensive and time-consuming process. It is also central to the success of the company since the new products which are launched are crucial to achieving success for the organisation in the many months and years ahead. If mistakes have been made, it is important that these mistakes are not repeated when the next new product is launched.

Too many mistakes over a long period of time can end up harming the quality of the final output. If products are sub-standard when they are launched, or positioned incorrectly, they will not achieve the sales targets that have been set for them, resulting in reduced revenues and costly expenses. This can have a detrimental affect on company growth and performance, and can also mean that competitive advantage, as well as market share, is lost.

Identifying mistakes in the process and implementing this feedback into the product development process will ensure that future new products are given the best chance to succeed and flourish in the increasingly competitive marketplaces of the 21st century.

Knowledge Hub

What is CNC Machining?

CNC Machining

CNC is the abbreviated term for Computerised Numerical Control. This is a computerised manufacturing process in which pre-programmed software and code operates production equipment. This equipment is often complex and includes grinders, lathes and turning mills.

As a subtractive manufacturing process, a range of tools are used to cut contours and shapes into a workpiece in order to create parts. The high level of automation means that CNC machining is suitable for both prototype and low-medium volume production.

A 3D model of the design is created using CAD software and is converted into a CNC programme. The machine is then programmed using the G Code, which informs the machine of precise measurements, such as speed, feed rate and coordination. The machine then removes material from the workpiece to produce the custom-designed part.

Many different types of materials can be CNC machined, including metals, plastics, glass, and foam.

Different Types of CNC Machining

3-Axis Machining

The two main types of 3-axis machining are CNC milling and CNC turning. The chief distinction between the two is that CNC milling uses a rotating tool and CNC turning uses a rotating part.

Let’s now look at each of these methods in more detail:

CNC Milling

During CNC milling, the cutting tool is attached to a spindle and can move in three different directions: along the X, Y and Z axes. It rotates at high speed to remove material from the workpiece.

Multi-axis milling allows 4 or more axes to provide added dexterity to the operation. 5-axis machines are commonly used and can create all kinds of parts within the accepted parameters of CNC milling.

CNC milling produces a flat or sculptured shape in the workpiece. The operation is performed on a milling machine using a multi-point cutting tool, also known as a milling cutter. The cutting tool cuts intermittently during the process.

CNC milling is ideal when straightforward cutting is required. However, for more complex geometries 3-axis CNC milling can have its limitations. As there are only 3 axes, the cutting tool may not be able to interrogate every part of the workpiece.

An advantage of this particular method is that parts can be produced to high tolerances and the setup costs are low.

CNC Turning

For CNC turning, the workpiece is held in a chuck and rotated, and the tool is applied to the object piece to remove material. A stationary cutting tool is applied to the surface of the rotating bar stock, and unwanted material is removed. There can be several cutting tools used to achieve this.

Unlike with CNC milling, the tool does not rotate but moves around the workpiece radially and lengthwise. It is a highly accurate machining process which is suitable for achieving tight tolerances.

The speed of the cutting will be dependent on the type of machine, the material being used and the main features of the component.

The cutting tool remains in continuous contact with the workpiece for the duration of the process. It is performed using a single point turning tool, also known as an SPTT.

CNC turning machines are also known within the industry as lathes. The increased machining speed reduces manufacturing costs, improves lead times, and makes large volume production more viable. However, because it is only suitable for cutting cylindrical shapes, its geometries are limited. It is, therefore, more commonly used as a secondary step when an additional feature is required.

5-Axis Machining

5-Axis machining (multi-axis machining) is a versatile process which provides more options and scope to the machining process than either CNC milling or CNC turning.

5-axis refers to the number of directions in which the cutting tool can move. It moves across the X, Y and Z linear axes, and rotates on the A and B axes. This means that it can approach the workpiece from any direction, thus adding greater versatility, accessibility, and sophistication to the process.

In essence, it means that a single component can be machined at 5 angles all at the same time.

There are savings to be made in terms of cost and lead times, and it is also possible to achieve more complex geometries than those which would be achievable with 3-axis machining.

This method also produces a smoother surface finish, and the accuracy of the final parts is usually high. The process is single setup, which also reduces the amount of manual labour required.

Advantages of CNC Machining

High level of automation which reduces the need for human input

Ideal for rapid prototyping, as parts can be produced very quickly

Ease of repeatability

Cost-saving exercise for prototyping or one-off designs, as there is no need to make custom tooling

Parts produced are often highly accurate and capable of achieving tight tolerances

CNC Machining by Industry

CNC machining is used for applications across a wide variety of business sectors. It is particularly useful in industries where a high level of precision and accuracy is required. Products and components which need to pass rigorous safety tests will significantly benefit from CNC machining.

Let’s take a look at the specific applications of CNC machining in some key business areas…

Automotive – gears, pins, brakes, shafts, valves, axles, and cylinder blocks

Aerospace – manifolds, bushings, landing gear and engine components

Medical – surgical instruments, dental implants, titanium joints and orthotics

Electronics – housings, computer motherboards, breaker panels, RFI shields and electrical insulation

CNC Machining at RP Technologies

CNC Machining is an element of our services here at RP Technologies which often gets forgotten, but we do in fact have extensive experience in this area, with excellent state-of-the-art CNC machining centres, a highly competent CAD design team, and a team of vastly experienced CAM engineers.

We precision machine components in most metals and polymers to support product designers and engineers for prototyping or low volume production. Our direct machining capabilities allow for fast turnaround of components, including those which feature complex shapes and contours.

Our CNC Machining department is expanding all the time. In 2023, we employed four new CNC Programmers and also invested in our brand new state-of-the-art Hurco 5-Axis Machining Centre.

We have received a high volume of repeat custom and we have also picked up many new customers during this period of time.

By offering tooling, moulding and CNC machining under one roof, we can reduce your total project costs by providing a one stop solution without the stress of sourcing multiple suppliers.

More information about the type of CNC Machining work we are engaged in can be found on our CNC Machining page.

If you would like to make an enquiry or have a discussion with us, please email info@rptechnologies.co.uk, or call +44 (0) 121 550 5868.

Knowledge Hub

Additive Manufacturing vs Injection Moulding

In our two recent technical articles, we investigated additive manufacturing and injection moulding. We explored them as two very distinct processes which are aimed at achieving the same thing…. the creation of plastic components for prototyping or low-medium volume production.

We will now look to summarise what we have learned from our examination into additive manufacturing and injection moulding.

We will also highlight the key advantages and disadvantages of both methods.

Injection Moulding

Injection moulding refers to the manufacturing process of producing parts by injecting molten material into a mould. The material, often plastic, is injected into the mould cavity in order to create a part. Once inside the mould, the material quickly cools, and the part takes its final solid shape.

Additive Manufacturing

Additive manufacturing is the process of creating parts by adding layers of material. Using this process, there is no need to create a mould to produce a part. The part is made by creating a CAD file which then talks to a machine and adds material until a part is formed.

Let’s look at the key parameters of both methods, examining in more detail the specific pros and cons associated with each process.

Injection Moulding

Pros:

  • Advantageous if large volumes are required
  • Produces parts that are high in precision
  • The process allows for great ease of repeatability
  • Extensive choice of materials with different properties
  • Highly suitable for mass production
  • Generates production intent parts from the tooling, making them ideal for market testing
  • Low cost per part. This is particularly useful in circumstances where parts will need to be run off the existing tool at regular intervals over a sustained period of time
  • Greater scalability: can produce low volume prototype parts through to tens of thousands
  • Ideal process for components that require high detail
  • Parts produced often have greater strength and durability
  • More suited to larger components than additive manufacturing
  • Perfect choice for bulk production
  • Results in a better product surface finish
  • Improved functional integrity of parts, which are more visually appealing and reliable
  • Most plastic used during this process can be reground, recycled and reused

Cons:

  • Up-front capital investment in tooling can be prohibitive
  • This process can result in higher amounts of plastic waste
  • Increased project turnaround times
  • It can be challenging to change tooling to optimise or iterate new designs

Additive Manufacturing

Pros:

  • Ideal for rapid prototyping as this process allows for quick and easy production runs
  • Works well for low volume production runs
  • Ideal for complex or intricate component designs where detail is important
  • Low entry costs and reduced material costs
  • Suited to projects where the design goes through several iterations
  • Highly flexible and agile process which ensures precision of final design
  • Modifications can be made easily using 3D modelling software
  • Time and cost savings can be achieved where there is no requirement to build a tool
  • Produces less material waste
  • Parts produced may be more ergonomic
  • Reduces inventory and storage burdens as there is no tooling that needs to be housed
  • Increased digital inventory reduces carbon footprint and improves sustainability credentials
  • Manufactures directly from 3D CAD files so the location of manufacture is more flexible
  • As it is a digital process, it can be stopped post-part build or post-run, and restarted with punitive cost

Cons:

  • Suitable for small plastic parts or components, but there are limitations with larger products
  • Unsuitable for large volume production runs
  • This method doesn’t allow for printing in production intent grade material
  • Surface finishes can be problematic, often creating a ridged surface, which can be an issue when producing parts that will rub against one another
  • Despite the initial set up being quick, the overall process can be slow, as most printers can only build one item at a time, which creates a significant challenge for detailed designs

Summary

Additive manufacturing and injection moulding are two very distinct processes with a range of advantages and disadvantages associated with both methods.

Additive manufacturing is ideal for very small production runs and offers quick turnaround times. Changes to the designs can be made easily and it is a process which suits the production of relatively small components.

Injection moulding is ideal for parts of all sizes and can accommodate prototype, pre-production, and production volumes. The costs are low per part and the process allows for ease of repeatability.

Choosing the right process is dependent on the end application of the component. Knowing how the product must look and function will usually determine which process a customer chooses. Such factors might include smoothness of finish, strength and durability, and heat or pressure resistance.

Industries that are highly regulated, and in which product safety and liability is a key factor, such as the aerospace and consumer goods sectors, may also dictate which process is most suitable.

However, it is worth noting that although this article has explored these two processes in direct opposition to one another, some now argue that both practices can occupy a common ground.

Indeed, many manufacturers and product engineers now regard additive manufacturing and injection moulding as complimentary rather than competing technologies. Combining these techniques can reduce pre-production cycles and allow for better testing and manufacturing.

To Find Out More:

If you’re about to embark upon a project and would like to know more about injection moulding, please contact us at info@rptechnologies.co.uk, or call +44 (0) 121 550 5868, and we will be happy to discuss your requirements.

Knowledge Hub

The Quantum 4 CMM Machine

Quality Engineering is a very important part of our work here at RP Technologies. Our Quality Engineers are there to ensure that the expectations of our customers are met at all times. They closely monitor projects to ensure that the highest levels of precision and accuracy are achieved.

In recent times, we have made considerable investment in this area of our business. This investment includes employment of additional members of staff, renovation of the quality offices, and investment in high precision measuring tools and equipment.

In keeping with our desire to constantly evolve and improve our service to our clients, we have recently invested in a new state-of-the-art CMM machine to replace our existing one. This new machine will significantly enhance the quality of our work and improve operational efficiencies.

The new QCT Quantum 4 CMM machine includes a hard anodised aluminium X axis bridge and Z spindle with air bearings. The machine is fitted with high precision Renishaw digital reader heads and scales. Superior Maxon motor gearbox units are used on all drive axis. The controller is QCT ACC3000 (USB) and a high-quality joystick unit ensures full multi-axis control.

What makes the QCT Quantum 4 stand out from the crowd is its QCT Inspect 3D-PRO Software. The systems graphics engine allows for quick calculations and the construction of complex features.

It has a comprehensive set of reporting tools for ease of analysis and the tracking of precise data. Reports are exportable in Excel and PDF formats and can be shared with colleagues and customers alike. Additional features include SPC Charts, Measurement MACROs and PIPE Measurement.

 

The QCT Quantum 4 also boasts the Renishaw Probe System. This is a fully motorised indexing head designed specifically for use on CNC CMMs. It provides 720 indexing positions in 7.5 degree indexing steps in both axes. The MCR20 rack allows TP20 modules to be automatically changed during a program. This probe system comes with a PH10T probe head with TP20 module and an MCR20 rack.

Quality Engineer, Andy Potter, said: “The QCT Quantum 4 will save inspection time and increase the scope and accuracy of our measuring facility.

It will also allow us to more easily compare both tooling and product to CAD. We will be able to create programs which will run automatically, as well as generate dimensional reports directly from the measured component.

The purchase of the QCT Quantum 4 reflects RP’s sustained commitment to investing in areas where we can return added value to our customers, and where we can stay ahead of our competitors.”

This machine will also give us greater scope for introducing additional quality engineering services. Our aim is to continue to expand our quality engineering offering so that we can provide a more comprehensive suite of solutions. Watch this space for more developments…

 

Quality Engineering is a very important part of our work here at RP Technologies. Our Quality Engineers are there to ensure that the expectations of our customers are met at all times. They closely monitor projects to ensure that the highest levels of precision and accuracy are achieved.

In recent times, we have made considerable investment in this area of our business. This investment includes employment of additional members of staff, renovation of the quality offices, and investment in high precision measuring tools and equipment.

In keeping with our desire to constantly evolve and improve our service to our clients, we have recently invested in a new state-of-the-art CMM machine to replace our existing one. This new machine will significantly enhance the quality of our work and improve operational efficiencies.

The new QCT Quantum 4 CMM machine includes a hard anodised aluminium X axis bridge and Z spindle with air bearings. The machine is fitted with high precision Renishaw digital reader heads and scales. Superior Maxon motor gearbox units are used on all drive axis. The controller is QCT ACC3000 (USB) and a high-quality joystick unit ensures full multi-axis control.

What makes the QCT Quantum 4 stand out from the crowd is its QCT Inspect 3D-PRO Software. The systems graphics engine allows for quick calculations and the construction of complex features.

It has a comprehensive set of reporting tools for ease of analysis and the tracking of precise data. Reports are exportable in Excel and PDF formats and can be shared with colleagues and customers alike. Additional features include SPC Charts, Measurement MACROs and PIPE Measurement.

The QCT Quantum 4 also boasts the Renishaw Probe System. This is a fully motorised indexing head designed specifically for use on CNC CMMs. It provides 720 indexing positions in 7.5 degree indexing steps in both axes. The MCR20 rack allows TP20 modules to be automatically changed during a program. This probe system comes with a PH10T probe head with TP20 module and an MCR20 rack.

Quality Engineer, Andy Potter, said: “The QCT Quantum 4 will save inspection time and increase the scope and accuracy of our measuring facility.

It will also allow us to more easily compare both tooling and product to CAD. We will be able to create programs which will run automatically, as well as generate dimensional reports directly from the measured component.

The purchase of the QCT Quantum 4 reflects RP’s sustained commitment to investing in areas where we can return added value to our customers, and where we can stay ahead of our competitors.”

This machine will also give us greater scope for introducing additional quality engineering services. Our aim is to continue to expand our quality engineering offering so that we can provide a more comprehensive suite of solutions. Watch this space for more developments…

action image
We can put your plans into action today

Award-winning aluminium tooling, plastic injection moulding, CNC machining, and rapid prototyping. We specialise in fast turnarounds of high quality components.

Want to know more? Get a quote